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Abstract

The objective of the present study is to establish thermodynamically

valid, non-isothermal stress strain relations for the elastic-plastic

range, and to obtain solutions of typical one-dimensional problems in-

volving unsteady temperatures.

In the first part of the report the entropy balance equation and

the expression for production of internal entropy are considered. The

limitations imposed by -,he second law of thermodynamics upon plastic

flow rules are investigated, and subsequently a set of non-isothermal

plastic stress strain relations is introduced. It is then shown that

these relations are in accord with thermodynamic irreversibility when-

ever the yield criteria of Tresca and von Mises are used. Moreover, it

is found that the stress strain relations of von Mises are a special

case of the non-isotnermal stress strain relations proposed here. An

additional problem concerns the specification of elastic unloading from

a plastic state, and in the presence of a temperature dependent yield

stress. Precise criteria for elastic loading and repeated plastic

Instructor, Department of Engineering Mechanics, The Pennsylvania

State University.

Associate Professor, Department of Instineering Mechanics, The

Pennsylvania State University.



±1oir are presented, thus coulerting the characterization of the elastic-

plastic response.

The second part of the report is concerped with an application of

the general theory to a problem for the infinite half-space constrained

against lateral motion, and subjected to a heat pulse uniformly applied

over its boundary. In the analysis of this problem the yield criterion

of Tresca is used; the transient and steady state solutions for both

strain-hardening and perfectly plastic media, having either a constant

or a temperature dependent yield stress, are presented. The appearance

of elastic and plastic regions of loading and unloading is studied in

some detail, and the residual stresses and deformations are correlated

to the maximum boundary temperature.

The solution of the half-space problem is then extended to related

problems for an infinite plate of finite thickness, and constrained in

the lateral direction. It is shown that expressions for predicting maxi-

mum residual stresses and strains can be obtained directly from the solu-

tion of the half-space problem.

Numerical results are g~ven for the case when the material is an

aluminum alloy. In addition, the maximum boundary temperature corres-

ponding to the recurrence of plastic flow during a second heat pulse

is determined assuming that the conditions produced by the first pulse

have reached a steady state.

Although the problem selected to illustrate the use and implications

of non-isothermal plastic stress strain relations is one-dimensional, the

method of approach and the basic equations maybe used in the analysis of

thermal stress problems in two or three dimensions.
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PART I. T(ODYX CS AND TEWOPIASTICITY

Chapter 1. Introduction and Review

1-1 Introduction

The present theory of plasticity is applicable only to problem in

which the effects of temperature on the plastic stress strain relations

my be neglected. In particular, the yield function or functions which

characterize yielding are assumed to be independent of temperature.

The reason for the neglect of non-isotherml problems is the relative

complexity of the plasticity theory, which would be further increased

by the inclusion of thermal effects.

It is well known that the yield stress of most engineering mater-

ials decreases with increase in temperature [i.i]*, (1.2]. As an illus-

tration, we note that for Berryllium the yield stress decreases from 97

x 103 psi at room temperature to approximately 20 x 103 psi at 1200 P,

whereas for Inconel X the corresponding decrease is from 112 x 103 psi

to 99 x 103 psi [1.-]. If the influence of temperature on the yield

function and on the stress strain relations is included, it is possible

that the stress may decrease rather than increase with the increase of

total strain. Such an effect would have no counterpart in the isother-

mal plasticity theory.

In general, plastic flow and temperature change occur simultaneous-

ly and influence each other. The search for the possible forms of non-

isothermal plastic stress strain relations is a task of considerable

theoretical and practical value.

* Numbers in breakets refer to the Bibliography.



1-2 Scone of the Investimtion

This report is essentially divided Into two pats, Part 1 bel"

SmtnU concerned with the general theory of non-iaothensil plasticty.

Specifically, in Chapter 2 the First and Second Ian of Imodymaics,

together with the concept of energ conversion, are critically discuss-

ed in conjunction vith plastic flow. The restriction Imposed on the

non-isotheiml plastic stress strain relations by the Second Lamr is in-

vestipted, and the conditions of loading and unloading for straia

hardening and perfectly plastic materials vith temperature dependent

yield stress are considered in the first part of Chapter 3. Non-iso-

thermal plastic stress strain relations are then presented, and the re-

lations associated with both the Mises and Tresca's yield criteria are

shown to satisfy the Second Law of Thermodynamics. Part .1 is devoted

to the application of the non-isothermal flow rules developed in Part 1

to illustrative problems. The response of an infinite half space# con-

strained against lateral motion, to a uniformly applied heat pese over

its boundary is considered. The medium of the half space is assumed to

be elastic, linearly strain hardening, and having a yield stress which

varies linearly with temperature. Subsequently the cases of elastic,

perfectly plastic medium with a constant or temperature dependent yield

stress are discussed. Finally, the method of solution Is applied to a

plate of finite thickness in order to obtain an estimate on the daemn-

sions of the plastically deformed region, since in the half space prob-

lem the dimension of length remins arbitrary. One of the faces of the

plate is assud to be subjected to a uniform heat pulse, wherea the

other face is either insulated or maintained at zero toerstaxe.



Nuerical coputaticos are presented for an alvainam .alar, and illuw-

trate the trends in the variation of transient and residua stress•s•

strains and displac•ments. Of particular interest are the diaensifm s

of plastically deformed regions as deternined by the maxim amplitudes

of the heat pulse.

1-3 Review of Literature

A set of non-isothermal stress strain relations for plasticity VaS

recently proposed by Prager [1.4]; the consistency of these relations

with thermodynamic principles has not been investigated, however the

work of Prager has been further elaborated by Boley [1.5] and Naghdi

[1.6].

Vakuleko [(1.7], [1.8] and Ziegler [1.9] have both attempted to

formulate the non-isothermal plastic stress strain relations from the

point of view of irreversible thermodynamics. A short sipmary of the

basic concepts of this subject may be found in the writings of Freuden-

thai [1.10], aghdi [1.11] and Grep~rian [1.12]; the fundamenta3s of

irreversible thermodynamics are presented in the vell-known texts of

Prigogine [1.13], Ca•len [1.14] and Dearoot (1.15]. Vakulenko and

Ziegler start with the assumption that the generalized forces, e.g.

stresses, are linearly related to the generalized fluxes, e.g. plastic

strain rates, although the validity of this assumption is not immediate-

ly obvious. Both authors consider the plastic power as the only quan-

tity associated with the entropy production during non-isotherml plas-

tic deformtion; in particular, Ziegler assumed that the stress and plas-

tic strain rate can be derived from two potentials the sum of which is

equated to the plastic power. For a strain hardening mediu, Vakn ko



derived a flow rule fro a plastic potential vhIch was found to be a

function of the plastic power, the free energ density and snother

stress potential, but made no reference to the form vhich the flow rule

vould asse during nmloading and neutral change of state ot the soediu.,

nor vas there any mention of the relation between a yield function and

the flow rule. Although highly interesting, the researches of-Vakalen-

ko and Ziegler are still on the na#re of exploratory atteopts.



(apteer 2 zmaeynamics and . leautic Defrmation

2-1 Introduction

The subject of thermodynamics is the study of energy and entropy

changes. Bpecifically, the first law of thermodynamics in concerned

,with energy balance, vhereas the second law characterizes the irrever-

sibility of deformtions through the Clausius-Duhem inequality. Any

process, reversible or irreversible, is invariably governed by these

two 1irs.

We shall establish in what follows the necessary thermodynamic

concepts and develop appropriate forms of the first and second laws of

thermodynamics. For convenience, and without loss of generality,, we

employ rectangular CartesiaA coordinates throughout.

2-2 The First Law of Thermodynamics

The First Law of Thermodyna;ics expresses the condition of energy

balance and, specifically, states that the time-rate of change of the

total energy in a body is equal to the rate of svpply of mechanical and

heat energies. We denote the mechanical power of external forces by P

and express the flux of heat into the body D as

"-f ni do =-f qf i dr (&)

B D

where j is the heat flux vector, ; is the outer norml of the

boundary B of the region D, and do, dr are surftae and volume

elements respectively.

The First Iaw m y then be stated as follow.,
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P -f qý, dTr +

D

where K is the material time-rate of the kinetic energy and

A is the material time-rate of the total internal energy.

Since

K f pi v, d T

D

where 9 is the mass density, and vi the particle velocity, it

follows that

K=f Pai v dr (b)

D

Here ai denotes the particle acceleration defined by

ai =v

The mechanical power P is given by

P =. Ti v, do + Pfi vi dr (T)

B D

where Ti and fi are the canponents of the surface tractions T

and body force F, respectively. The stress tensor, 'r and the

stress vector Ti are related by the equation

Ti =. rj n ,

which, when substituted into (c) yields

P f Tjij + Pfi) vi + Tji vi,j] di (d)

D



I .7

after using the dtvergence theorem for the a co Integral. % virtue

of the eqLation ao tion,

3j,3 + of,- pa1  (e)

(d) reduces to

_.f pai v, + Tir vj 3 ]d (f)
D

FJoimly,, we decompose the velocity gradients vij into symmetric and

antisymetric parts,

vi, 1 = dii + ij

where,

d = - 2 (v1,3 + v3 , d ; 'Vi3  (Vi , j - v 3 1 ) (g)

are referred to as defrxnmtion rate and vorticity, respectively.

Fran (b) and (f) now follows

P k +IfT ijdj d r (ix)
D

Since the stress tensor is symmetric, we have that

T ij vij M 0

Therefore, letting

A f p XdT (L)

D



I$

vhere X is the rate of internal energ density, we arrive at the fore
[2.1]p[2. , 12.3]p [2.4]

Px + qi,i - ij dij (2.2.2)

of the law of conservation of energy. It is platsible to write

where U is the time rate of a function U of elastic strain ij

and the entropy density s, whereas g represents the time rate of

internal energy due to plastic deformation, and is not the time rate of

a state function since plastic deformation is a path dependent process.

Then

P U + p%+ ,im = ij did (2.2.3)

Equation (2.2.3) is a representation of the principle of balance of

mechanical and thermal, energies in a form that is most convenient for

subsequent investigation.

2-3 Heat Conduction Equation and the Entropy Balance Ftuation

We assume that the energy U in equation (J) of the preceding sec-

tion is a function of the elastic strain 6ij and the entropy s, thus

U U (. ,s) (2.3.I)

We also adopt the customary form of the equations of state ,

[2.6],

aM P)UT= ) (2.3.2)



I

In the case of small deformaticns and tepmerture changos, the

function U my be approximated by the first teoms of a Taylor's ex-

pansion about some reference state. Taking the values of U, rjs

T and s at the reference state to be zero, we obtain

U 2 ) (As 2 + 2b sJ + 7J)2 + 2P .j ) (2.3.3)

By (2.3.2) and (2.3.3), it follows that

T (A a + b )/p

3 a n5 j + 7j ± + 3A ±3

equivalently,

a (Tp - b)/A

(2.3.4)

±3 ij AP j i

where A, bp 7 in (2.3.3) and (2.3.4I) are known material properties

and -7 is equal to -i " We write

(7 _ h)- . (a)
b - (3X + 2A) c (b)

vhere X and 4 are Lame constants and c is the coefficient of

thermal expansion.



ReOclling that d,4 is the total deformation rate, we have

di4 - ýi4 + s8U (2.3.5)

where U and Sa are the elastic and plastic deformation rates,

respectively. Substitution of (2.3.2) and (2.3.5) in (2.2.3) then

yields:

o s+~ o Ii"("j ilj -p #)(2.3.6)

Elimi nting s in (2.3.6) by the first equation of (2.3.4) and replac-

ing I,± by -k Tii through the use of the Fourier's Law of Heat Con-

duction, we arrive at

pG(T) -k T TbA+Y(p G•) - •,l A i- ( j "i " p )(.3.7)

where 0(T) - T p/A. In particular for umall temperature changes and

deformation we have that

22
Pp 0  Tb.ST - A kT, ii ( j si p

We take

P02 T0  k
0- A ' "" (c)

where P• To are the initial values of the mss density and teerature

respectively, c is the specific heat per unit volume and K is the

thermal diffusivity. We now have •,,, conditions, (a),. (b) and (c) for
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explicitly determining A, b and 7.

The expression given by equation (2.3.7) is wneM as the beat con-

duction equation. The first term on the right hand side of (2.-.7) MY

be interpreted as a heat source due to the rate of elastic volume defor-

mation, vhereas the term in the parentheses represents another heat

source accounting for the dissipation of the inelastic mechanical eher-

gy into heat during plastic deformation. Since plastic volume change

is usually assumed to be zero, the two heat sources represent two din-

tinctly different phenomenons. The term TbO/A represents a second-

order effect which becomes noticeable only when the duration of motion

is very long. Neglecting this term, we write

SG(T) T - k Tii = ( s(" "g) (2.3.8)

It should be noted that in the dissipation of inelastic mechanical en-

ergy, not all of the plastic power r ij sij is converted into heat;

only the part in excess of the work W required to increase the inter-

nal energy in conjunction with plastic deformation is dissipated. The

function W my be considered as the rate at which energy is absorbed

by the medium to change its internal structure during plastic deforma-

tion.

Dividing (2.3.6) by T, and makin use of identity

-i -:L 'a (2.3.9)

T

we obtain the equivalent form:

-(=i), T q i + (T a g (2.3.10)
T
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known as the entropy balance equation.

Let us now introduce an external entropy flux S by

p dr (- ) n do
e J e

D B (2.3.1.)=f (") , d-

D

where e is the corresponding density. Writing

e.s +si (2.3.12)

where si is defined as the internal entropy production. We note that

by (2.3.10) and (2.3.11),

as = ps+ , (2.313)

The Second Law of Thermodynamics in the form of the Clausius-Duhem in-

equality, requires that for any process, the internal entropy produc-

tion must be non-negative [2.7], [2.8], [2.9].

CLP ;+ ( -_'-)>,- 0 (2.3.14)

This implies that the right hand side of (2.3.10) must be greater

than zero. Since each term on the right hand side of (2.3.10) repre-

sents an independent phenomenon, we require that these terms be separ-

ately non-negative, thus

. > 0 (2.3.15)
"T2



and

~ (j s " •p) > (2.0.6)

By Fourier law of heat conduction

q w - k Ti

Equation (2.3.11) therefore requires that

k>0

The inequality represented by (2.3.16) must be satisfied in any

plastic process. It may be further explored by examining the heat con-

duction equation, (2.3.8) for two extreme cases. If all the plastic

power is absorbed by the material, there is no dissipation of mechani-

cal energy into heat. This would imply that the heat source in (2.3.8)

simply vanishes, hence

S.'T ij s j (2.3.17)

On the other hand, if no energy is being absorbed by the material dur-

ing plastic deformation, all the plastic paer is converted into heat,

hence

= 0 (2.3.18)

In reality these two extreme cases are not likely to obtain (2.10].

It has been demonstrated by Hort [2.11], [2.12], Sato (2.13], Taylor,

Parren and Quinney [2.14], [2.15], (2.16] using calorimetric.meaure-

ments of tension, torsion and compression specimens that not all the



plastic power is converted into heat For e pmule, Taylor ead ftren

[2.17] found in their experiments that for steel 8.5% of the plastic

work was dissipated in the form of heat, hence only 13.5% was absorbed

by the material. The percentage of the plastic work converted into

heat has been found to range from 90.5 to 92 for altuinum and from 92

to 93 for single aluminum crystal.

We may postulate that

p g = Ae Ti sij (2-3.19)

where A is a property of the material which can be experimentallye

determined for a particular material and assumes values between zero

and one, i.e.,

1> A > 0 (2.3.20)

The cases of A being equal to zero and one wculd correspond to

the two extreme cases represented by (2.3.17) and (2.3.18). Combining

the relations (2.3.16) and (2.3.19), we obtain

1
1 a ij (1 - Ae) >0 (2.3.21)

Since T is always greater than zero, it follows from (2.3.20),

that the requirement (2.3.21) is equivalent to

I ij sij> 0 (2.3.22)

We have therefore shown that, on the basis of the assumption

(2.3.19), any flow rule which satisfies relation (2.3.22), will also

satisfy the relation (2.3.16) obtained from the Second Law of thermo-

dynsics.



Chapter 3 Non-Isothermal Plastic Stress Strain Relations

3-1 Yield Function and the Criterion of Loading, Mloading and Nentral

Change of State

The internal forces of a continuous medium are described by a

stress tensor Trj. Representing the state of stress by a point in

six-dimensional space of Tij , a medium is customarily said to be

elastic if the state point lies within a certain convex domain contain-

ing the origin of the stress space. This domin is referred to as the

elastic domain, and we say that yielding occurs as soon as the state

point reaches the boundary of the elastic domain characterized by

F ('rij, T, t) = o (3.1.1)

Here the yield function F is assumed to be a function of stress ij'

temperature T, and of a strain hardening parameter t defined by

t

=f (sBj sil2 dt (3.1.2)
0

One of the basic assumptions of plasticity theory is that plastic

flow is independent of hydrostatic pressure. Therefore, we shall re-

place in (3.1.1) the stress Tij by the deviatoric stress vii defin-

ed by

1

vii Tij -3 Tk 8ij

The equation (3.1.1) now becomes

• •~~~ (v,,, T, 0 Ol•



and we let

I (vi, T, o) - f (vij) - R (T, o) (3.1.5)

where i(y ) is a function of deviatoric stress alone and H is a

function of temperature T and the strain hardening parameter I.

Since the medium in assumed to be hanogeneous and isotropic, the func-

tion f depends on vij through the invariants

J2 (vij) "w I j vlj I• ( 2 + v22 + v32)
112 2 7

(3.1.6)

3 i "3i y y (v1+ v2
3 +v 3•3 vl 3 i vJ v3k vd. 3 (1 +v

Both functions f and H are further assumed to be continuous and

differentiable. We shall adopt as a basic postulate the condition that

H increases monotonically with respect to the strain hardening para-

meter •, i.e.

q > 0 1(3.1.7)

Most engineering materials exhibit the characteristic that the

yield stress decreases with increasing temperature [3.2], [3.3]. We

observe from (3.1.4) and (3.1.5) that during plastic flow the boundary

of the elastic domain expands as a result of strain hardening, and that

this boundary may also contract or expand depending on the rise or fall

of the temperature. If the influence of the temperature on the yield

stress doaimtes, it is probable that with increasing temerature the

*A similar postulate is used by Hill [3.1] for the case when the strain

hardening parameter is equal to the total plastic work.
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elastic doaain my still be shrinking, even if there is strain hsedn-

irg. Thus the possibility of a decrease in stress accaqanied by an

increase in strain and temperature in the medium cannot be ruled out.

In isothermal plasticity, a medium that exhibits this phenonenon of de-

crease in stress with increase in strain is considered as unstable

since it behaves like an energy source. Furthermore, in isothermal

plasticity the decrease in stress autcmatically implies unloading,

which is not always the case in non-isothermal plasticity. It is,

therefore, necessary to examine the influence of temperature on the

yield function with care, and determine the conditions under which the

medium undergoes loading, unloading or neutral change of state.

As is custcmary in plasticity theory, we set the yield function

equal to zero during plastic deformation. If the stress point moves

from one plastic state to another in stress space, the plastic strain

increases, and we have the conditions

F = , F = , s O , 0

The vanishing of F implies

Bv + N T + 0 (3.1.8)
ii

BY (3.1.5)o Ind noting that

af aff(3.1.9)
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The eqmation (3.1.8) now becomes

w- viT + N (3.1.10)

Since t is a positive definite quantity, as in clear from the defini-

tion (3.1.2), and recalling the hypothesis (3.1.7), it follows that

i >0 (3.1.3)

The criterion of loading is thus expressed by

=0 , 1= 0 0 s 0 >0

and

a a >
3;-Vi+ qa T >0 (3.1.12)

During unloading, the plastic strain rates become zero and the stress

point moves from the yield surface back into the elastic domin. The

criterion of unloading is expressed by

P<0 or F=0 < 0 F< ,0 , -0

and

- vj + - T<. (3•1.13)

The neutral change of state is then defined by

F=O a F=O - s±jij =0 , 0

and

--V + T - 0 (0.1.1)
is, ii
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For a perfectly plastic material, the yield function F is a

fumntion of stress v j and temperature T alone, i.e.,

S(vij ,)T) - f(vij) - x(!) (3..1.15)

the criterion of loading, unloading and neutral change of state can be

deduced from (3.1.15), (3.1.10), (3..112), (3..13) aýd (3.1.14) by

setting a/ot equal to zero. The results are as follows:

Loading

F 0, F =0 , sj 0 0

and (3.1.6)

Unloading

F<O or F= 0, F <0 ij = 0  0

and (3..17)

S+ 7 T<O
~ij

Neutral change of state

F 0 , F=0 , sj =0 ,

(3.+.N8)
+i i T=



3-2 Development of Non-Isothermal Plastic Stress Strain Relaticns

In this section both the strain hardening and perfectly plastic

media with temperature dependent yield stress are considered. Since the

elastic response is characterized by Hooke's law with an added tempera-

ture term, attention is directed mainly to the non-isothermal plastic

stress strain relations. It is assumed that an infinitesimal change of

the plastic strain rl iis caused by infinitesimal change in the devia-

toric stress vii and the temperature T. Furthermore, the relations

between the rates of plastic strain, stress and temperature must be homo-

geneous of order one so that any results obtained would be indepedent of

the time scale employed. We write

S= Aijkl vk + Bij T (3.2.1)

where A and Bij depend on v i, T and ri,. Incorporating

the conditions (3.1.12), (3.1.13), (3.1.14) for loading, unloading and

neutral change of state into (3.2.1), the coefficients Aijkl and Bij

take on the form

Ai • , Bi Cl a (3.2.2)

and the flow law (3.2.1) becomes

o if F_<O , F<O
"•" o•(• •÷ > • ,. , u, o (34•o)

41a F - a



In view of (3.1.12),. the quantity in the parenthesis ini (3.2.3) in al-

mys positive definite during plastic flow. The plastic stress stain

relatiou ust further satisfy two necessry conditiems [J-4.. tmely,

the condition of plastic inceprenssibility,

811 - 0

and the condition that the direction of principal axes of plastic strain

increment coincides with the direction of the principal stress zeej,

since the sedium is assumed to be isotropic. These two conditions are

satisfied by choosing

C a1 *.
Cij D ij (5.2.4)

where the function g my be considered as a plastic potential, and de-

pends on the invariants J2 and J,, wherea D is a function of v,

T and 1. The most convenient choice of the function g is to Identi-

fy it with the function f introduced in (3.1.-5). Replacing 9 by f

in (3.2.4) we obtain

1laf 1 1W af 2 + af a (3.2.5)
ii 2 .. ij

Pro= the definition (3-.1.6) of J2 and J it is found that

2 W , "v ' 1 *k "ij (3.2.6)
Fi. i i P k i



From (3.2.6) and (3.2.5) ve readily deduce that Cii 0 0, and thus the

condition of plastic incopressibility is met. In term of the principal

rates of stress and strain, the relation (3.2.3) may be vritten as

"a' ( "- vr+ T) for -. 0o, ,.o0
~ i k

where Si' 1i and vk are principal plastic strain rates, principal

total and deviatoric stresses, respectively. The ccmponent )f/-¶i

represents the projection of the gradient of the function f in the

direction of the principal stress T i.

It remains to determine the function D. Recalling that during

plastic flow both F and F are equal to zero and noting that i is

equal to (sij sij 1/2, it is found after substituting (3.2.3), (3.2.5)

into (3.1.10) that

D . a (f 1/2 (3.2.7)

We recall that a/•| was postulated to be positive definite during

plastic flov, and observe that

1/2

is positive definite if the positive root of the quantity in the paren-

thesis is taken. Therefore the quantity D is positive definite.

-Combining (3.2.3), (3.2.5) and (3.2.7), the non-isotherml plastic

flow law now becomes



0 for 17-0, 7'O

Sia+ ( - +T for -O,F-0
1/'2 + =.

(3.2.8)

The formula (3.2.8) is a general flow rule for strain hardening media

with temperature dependent yield stress. and can be used to detexmine

the plastic strain rates once the function F is known.

The two most commonly used yield criteria are due to Von Mises and

Tresca respectively. The yield function defined by the Von Mises yield

criterion is given by (3.5], [3.6]

F=f -H

-J2 - 2 (T,,) (3.2.9)

where

f J 2 ' X2 (T,E)

and K is the yield stress in simple shear. The yield function repre-

sented by (3.2.9) is said to be regular because a unique normal can be

defined at every point on the yield surface. If (3.2.9) is substituted

into (3.2.8), the flow rule associated with the Von Hises yield criter-

ion then takes on the form

for F7< 0, F <Osij i

a* kIF/( (,. ;f ) for, 32,.10
•(v "ma (3.2.1o)



The flow rule for a perfectly plastic medimn with tiperature dependent

yield stress can be established by considering s&ain the condition of

the coincidence of the direction of principal axes of plastic strain

rates with the principal stress axes during plastic flow, and the con-

dition of plastic incompressibility. These conditions suggest the flow

rule

o for F 0 , F -0

W;__ for P 0 , 7=0
ij

where X is a function of plastic strain, stress and temperature and

their rates. It is not possible to determine X from the yield funa-

tion itself because the latter is independent of plastic strain. If we

consider the yield criterion of Von Mises,

F = f -H

(3.2.12)

J2 K2(T)

then X may be obtained by multiplying (3.2.11) by -r and saming.

In view of the definition (3.1.6) of J 2, we find that

(3.2.13)

3-3 Non-TxQthermal Plastic Stress Strain Relations for Singular Yield

Functions

The yield function defined by the Von Mises yield criterion is a



regular yield function representing a yield murface vithout corners. We

-y also ba•aoterize yielding by a set of n yield fmctions (7)

(vTij, , 9), uhere 7 = 1,2,...n. These yield functifms define a

Yield surface in the stress space Vhich my not have a unique norm at

every point, and are referred to as singular yield fnctIcqs. We adopt

the convention that plastic flow begins whenever any one of the func-

tions F(7) becames zero, and that the medium is elastic if all func-

tions F(7) are less than zero. The plastic strain rate is then taken

to be the sum of the constituents sa [3.,[, [3.81o [3.9], thus

a j- 7 ai

For a strain hardening mediumi with a temperature dependent yield

stress, the plastic strain rates sij () are defined by

((7) .o, 7,(y)c o or ]r(7). o , (

v ia + T ,--

(3..3.2)

(7). (o . 0 ;(7 0)

(7) + (7) •

(~) anii

fhere st, ( a 7 are the values of satj and corresponding

to the function (7). The most commonly used singular yield functicns

due to !resca, and are defined by [3.10], ([.31]



7 (2) . f (2) _ II(Ts,) 3-)

,(3) . f(3) - x(T,e)

where
f I-v - `2

f2= 2 2

f(2) 2 2"3 )

2 2
P() = 2 2

and vi, ri are the principal values of the deviatoric and total

stress tensors. The function H is identified with the yield stress;

for a perfectly plastic medium H is a function of temperature T alone.

The plastic strain rates s ij in (.3-.) m (3..2)

ed from (3.2.8) by replacing the functions f, F and H by the corres-

ponding functions f(7), "F(Y) and H associated with the singular

yield surface.

We note that, for Tresca's yield criterion not more than two of the

three singular yield functions may vanish (3.12] , the third one would

be equal to -H. In this case the stress point is at the corner of the

yield surface defined by (3.3.3) in the space of principal stresses. We

remark that Tresca's yield criterion is frequently used when the direc-

tion and sense of, the principal stresses are known frau consideration of

symmetry.

From (3.2.11) follows that, for a perfectly plastic medium, the



flow rule associated vith the Tresoas' 7yeiA criterion is eormssed by

E -(3-3-5st = £

,.(:') if ,• I()<o o. , . o, i()

,(7) . r7
k - <

and (336

if a()=

(7)F.- v + m

The quantities ) are functions of stress, temperature, strain and

their rates. These coefficients may be determined in a manner similar

to that used in the last section, althouth for particular problens other

methods my be more suitable (cf. chapter 5).

3-4 Thermodynamic Investigation of the Flow Rule

The conditions imposed on flow rules by the principle of therno-

dynamics were derived in the preceding chapter. Specifically, we fonmd

that non-negative entropy production requires that

Iri, si, > 0 (2.3-22)R

be valid. We intend to show in this section that the ,generl non-iso-

therMw flow rule given by (3.2.8) satisfies (2.3.22), and, thersfore,



the second lav of thermodynamics, when used in conjunction with either

the Von Mises or Tresca's yield criterion.

We recall the flow rule (3.2.10) associated vith yield criterion of

Von Mises, and, multiplying it by rij and suin, obtain the result

In order to verify (2.3.22), we first recall

( vkl + N ) > 0 (3.1.12)R
ki

and that aN/A was also assumed to be positive (cf. relation (3.1.7).).1/2
Then, since (vm vmn ) is clearly positive, the only quantity that

needs to be examined is Tij vij.

Writing

= v + (3.1.3)Rilj vi, + Bi Tkk

we find that

Tii vii - vii vii + 3 i. vii 'kk

= vii vi o (.-0.2)

where we used the fact that, be definition

vil 0 0



i.e., the first invariant of the deviatoric stress tewor vanishes idan-

tioallY. Thae result (3.I4.2) thus co~letes the proof of (2.3.22) for

the case vhen the yield criterion of Von Mises in adopted.

In order to verify (2.3.22) for the flow rule (3.2.8) used in con-

junction with the Tresca's yield criterion,, we consider a stress point

at a corner of the yield surface. The case when only one singular

function vanishes is then included as a special case. Let us assme

that in the yield corner

v'> 72 V,>v3 343

and that the singular yield functions are now represented by

F•l) v 2 v 2

-H=

F(2) =HO1V - (3-4-4e)

F(3) . .1-v` "~ _• . ,, 0
2

In addition, we let

;(). (2) o 0()- (3.4.5)

Noting that

"71  '72 , ' 2 V1 ' v3  'l. 1 .3

the assuaption (3.li.3) Implies

T 1 'r. 0 1 1- T3>-



The first two equations of (3.-.J) am be writtn as

f-i v1 2 "l- 'v2 T
2 2 m

(3.4.7)

Since the function H is the same for all three singular yie3l

functions, this implies that

v2 = 73 T 2 = T 3

(3.4.8)
(l() . f(2) f c FM . F(2). Fc

where f? and Fc are the values of the functions f(1) f(2) and

F(1), F(2) at the yield corner, respectively.

fultiplying (3.3.1) by TiI and noting that

r sij = T'k k

we obtain 3 e(7)

Since, by (3.2.8),

~=.(7)

a(7) (7) - . (7) /8 1 (7C F' (;- vn + 2-- T) (3-i&-10)
aff af77 af7 /

m T



the substitution of (3.4.-o) into (3.4.9) with (3.4.5), (3.-.7) and

(3.4..8) yields

T 1 s + T 2s82 + T 3s83

a(* (l) a (2) +a€'1(2)

2 ~

1 aFc * 7c
112 7 ý ( - vn + W- T) (3.J4. 11)

_ c nc

The flow rule associated with the Trescaa's yield criterion is com-

patible with the second law of thermodynamics if the right hand side of

(3.4.11) can be shown to be greater than zero. The quantities (aE/0),

(af C/'am ()fc/*) 1/2 and (apc/ývn vn + a~/ý T) are ali positive

definite during plastic flow. The only quantity that needs to be exam-

ined is the sum of the terms inside the square bracket. By (3..47) and

(3.4.8), we obtain

,(l) ()f(2) 1 (,(l) 1 )f(2) 1

1 2 3

(3ee.12,e)

Bence, in view of (3.J4.6).. we have that



(i) + a(2) + () a()

2 13

.Thus it has been shown that the flow rule used on conjunction with

Tresca's yield criterion is also compatible with the Second Law of Ther-

modynamics.

3-5 A Special Case of the General Flow Rule

We now proceed to exhibit a further justification of the form

(3.2.8) of the flow rule. Specifically, in this section it will be

shown that the Von Mises flow rule formulated for perfectly plastic

media is a special case of the general flow rule.

By (3.1.10), the general flow rule can be written as

af

"" ii C 1/2 ) (3.5.1)

With the yield function of Von Mises represented by

v -K (3.5.2)ivnmn

where K is the constant yield stress in simple shear, the flow rule

now becomes

v v



By definition (5.1.2), t1/eqa2o akI0k After re-anr'sng-

ing), (3.5.3) nov appears as

(V 1/

vii = ( )1/2 8 i (3.5.4)

From (3.5.2) follows that, during plastic flow, (vm v )1/2 is

equal to K,/1, therefore

v v 1/2
vm , )V K K (3.5.5)

where

I = 2'•lSk
2 ki kI

Combining (3-5-5) and (3.5.4)., we arrive at

K (3.5.6)i = - sl
it, iry

The expression given by (3.5.6) is the exact form of the Mises

flow rule for perfectly plastic media [3.13]. This implies that the

general flow rule as represented by (3.2.8), under certain assumption

can be reduced to some known plastic stress strain relation, e.g. the

Miles flow rule.



PART I. APPLICATION

Chapter 24. Ih Elastic-Plastic Reslonse of a ailf Space to a Uniformly

Applied Heat Pulse at its Boundary

4-1 Introduction

Temperature variations of large anplitude and short duration are

encountered in various fields of engineering applications. For exam-

ple, the elements of a nuclear reactor may be subjected to sudden heat-

ing and cooling due to changes in the rate of fission. Simil4rly,

spacecraft is subjected to heat pulses associated with the ignition of

rockets, and with re-entry into the atmosphere of the earth [4.1],

[4.21, [4.-]. It is naturally important to be able to predict the tran-

sient and residual stresses and deformtions caused by such heat pulses

and to investigate the physical damage incurred.

Transient thermal stress and deformation in the elastic-plastic

range have been recently studied by a number of investigators. In par-

ticular, various problems for plates have been treated by Weiner (4.4],

Yuksel [4.5], Landeu and associates [4.6], and most recently by Mendel-

son and Spero [4.7]. Except for the work of Mendelson, the incremental

theory has been used in every case, and the medium considered was "asu-

ed to be elastic, perfectly plastic obeying the Von Mises yield condi-

tion and possessing a constant yield stress. Landau [4.81, however, in

one case did take the dependence of the yield stress on temperature in-

to consideration. Mendelson employs the deformation theory without re-

sorting to any flow rule of yield condition, but takes strain hardening

and dependence of the physical properties of the sedium qpon topers-

ture into account. Similar investigations pertaining to elastic, per-



fectly plastic cylinders were considered by Weiner and Ruddleston [J.9],

Landau and Zwicky [4.10]. In the latter investigation the yield condi-

tion of Von Mines is adopted, and the yield stress is assumed to depend

on the temperature. A similar problem pertaining to elastic, strain

hardening spheres with a constant yield stress was treated by Huang

[4.11]; because of the complexity of the numerical calculations in the

work of Huang and Landau, high speed computers were used.

In order to illustrate the use of the concepts developed in the

first part of this study, we shall present a detailed analysis of the

transient and residual stresses and deformations induced in a half

space by a heat pulse uniformly distributed over its boundary. The

half t2ace is assumed to be constrained against lateral motion, and the

medium is assumed to be elastic, homogeneous and isotropic, and linear-

ly strain hardening in the plastic range. Moreover, the yield stress

is permitted to vary linearly with temperature, whereas other material

properties are assumed constant.

We shall give a complete stqdy of the growth and decay of various

regions of loading and unloading. The most serious limitation of the

solution to this problem is that it lacks a characteristic dimension of

length. Therefore, we shall briefly investigate a plate of finite

thickness in Chapter 6.

4-2 The Temperature Problem

As a consequence of the mathematical complexity inherent in the

thermal stress problems, it is necessary to select temperature solu-

tions that are as simple as possible. In particular, the mathematical



problems are greatly simplified if the temperature solution is in a

closed form. One class of such closed form solutions corresponds to

temperature fields induced by instantaneous heat sources (or sinks),

doublets, and the like. Since these solutions are singular at the

source point, the latter must be located outside the material body.

I

I

Fig. 4-1 Heat Sources and the Infinite Slab

In the present analysis, a row of heat sources is placed at an

arbitrary distance a fram the boundary of the body (Fig. 4-1). Let

x be the coordinate measured franm the source plane, and t the time.

The increase of temperature T over sane reference temperature To is

then given by (4.12]

T - C e ~ 21

where C is a constant, and K is the diffusivity of the material

(assumed to be constant). It m be readily verified that the tempera-

ture field (4.2.1) satisifes the one-dlmersional heat conduction equa-



tion

2T .1 aT (41.2.2)

and is finite everywhere in the material (i.e. x > a).

The .aximium temperature Tm occurs at the boundary x - a, and,

as may be found from (4.2.1), at the instant tm given by

2
t = L-(.23m 2K

Similarly it is found that the maximum temperature at x is reached at

the instant t given by

2
x (4.2.4)

The arbitrary constant C in (4.2.1) may now be eliminated in

terms of a given maximum temperature Tm, thus obtaining

1 2 1.25

T T a e (4.2.5)
(2 K t771/

Substituting (4.2.4,) into (4.2.5), the maximum temerature T=

attained at x becomes

T - T (.2.6)M x
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The variation of the temperature T with time t for various values

of position x is shown in Fig. 4-2, vhereas Fig. 4-3 iflustrates the

variation of T with x for various values of t. The results have

been made dimensionless by using the variables

TA 3T, x/a, t/t

for temperature, position and time respectively.

The solution (4.2.1) corresponds to a temperature field induced

by suddenly releasing a finite amount of heat at x - 0. It may be

seen from Fig. 4-2 that this solution is a reasonable approimtion of

a heat shock, i.e., of a sudden rise in the boundary temperature follow-

ed by a gradual decay. It has been assumed, of course, that the heat

conduction problem is not influenced by the mechanical deformation of

the material.

4-3 The Elastic Regime

During the initial stages of the heat shock, the response of the

material will be elastic. Let Tix eii' ui denote stresses,

strains and displacements respectively. The elastic thermal stress

problem is then characterized by the stress equation of equilibrium

Sijpj , 0

The stress strain relations

11 ei B- 91 T 5j- rj- (+'V:l~l) 'k~k '



and the strain tdiplaceaent relations

e 1,j " (, + u.j:. (4.3.3)
-j 7 (Uipj + A

where El_, a., V, are Young's modulus, coefficient of thermal expan-

sion and Poisson's ratio, respectively, and use has, been made of the

conventional index notation.

In addition to quiescent initial conditions, it is assumed that

at the boundary

T .. 0 for x = a (4.3.4)

In view of the simplicity of the problem, the following abbreviated

notation is introduced,

U (xt) , 1 = -M 0 (4.3.5)
y

S e(xt) , e E zz W 0 (-..3.6)

T yy 'T =¶MT(x~t), T xx 0 (037

The relations (4.M.5) express the condition that the half-space is con-

strained a&inst lateral motion. It follows, then, that all shearing

stresses and shearing straips vanish. Finally, the second of (4.-.7)

-follows fr (4.3.1) and (4..34).

Taking (4.3.5), (4.3.6), (4-.37) into account, the relation

( .2) finally appears as
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-1T T (1 -l) ,

whence follows

C - - - a T (4.-.8)xx 1"/

yy T - T (4T3.9)

Here T is given by (4.2.5), and we note that

2 (4-.3.1o)

where

-

2(l + -i)

is the elastic modulus of shear. Introducing the maximum shearing

stress q

q 2(1 - V1) T (43.1 2)

and the nLxiaum shearing strain p

p (l -- a T (43-3



the relation (4.3.10) my now be written as

q - 2 LpZ (Ji.3.114)

Finally, integrating (4.3.8), the &lwplacement U is obtained as

U 1 aa (e ) 1/2 L 
(V 2 t-

where

2s 2
*(S') = 2_._.±/ e- d u

(jtF/2 fi
0

is the error function, and the arbitrary function of time has been

chosen so that the regularity condition

U 0 for x -.-o (4.3.16)

in satisfied.

We also make the relevant observation that the solution given by

,(-3..8), (4.3.9), (4.3.15) holds even if the elastic region begins at

some elastic-plastic interface characterized by x - pI"

4-4 The Elastic-Plastic Regime

4-41 The Onset of Yielding

It is found from the elastic solution presented in the preceding

section that, as the teaperature increases, the shearing stress also in-

creases. Let the initial yield stress in shear be denoted by y , and

let



Y,- y0 N

where B in assumed to be a known constant, and y is the wvlue of

y for T a 0 (i.e. at the reference tea~erature TO). The instant

t1 at which yielding begins at the boundary x - a can be readily de-

termined by letting

q (ayt) - y1 (at) P (a)

if we adopt the yield condition of Tresca. Fran (4.3.12), (4.4.1) and

(4.2.5) we then obtain

l o g t -2 2 l o g + 1[2 t-- - -BI+ 
'l '

1 2 Kt 1

(4.4.2)

The equation (4.4.2) can also be used to find the instant t x at

which yielding occurs at the plane characterized by x, if a and t1

are replaced there by x and tlx, respectively.

From (4.3.12)0 (4.4.1) and (a) follows that the boundary temera-

ture T1 at the instant t, is given by-

B + El a/2(l - 1,)
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""Region of Region. of
"-Plastic EatcX

Loading

R, Boundary of total

Plastically De-Sformed Region
a

I x p

IEKlastic Plastic
Inter face

Fig. 4-4 Regions of Loading During the Elastic-Plartio Regime

For t> t 1  anm elastic plastic interface whose location is denot-

ed by pl, progresses into the material. In the wake of this inter-

face, the material uadergoes plastic loading until t becomes equal to

tin; then, corresponding to the decrease of the boundary temperature,

an elastic unloading front emnates from the boundary.

The present section concerns the time interval t1 < t '< tip hence,

in addition to the solution of the elastic region, it is necessary to

derive a solution for the plastic region.

4-42 The Elastic Region

The solution of the elastic region is the same as that given in

section 4-3 except that the elastic region now lies at x >p1 where

Pi is yet to be determined.



In order to determine the position of the elastic-plastic inter-

face Pl, we use (4.2.5), (.-.41), (4..312) and (4.3.9). In particu-

lar, from

q (pl, t) - Y, (P1 ,t) (4.4.4)

follows

OCR, T (p 1,t) = Yo - B T (pl,t)

or

2 =2 1/2 E
"p 2 t " 1 logt-2log yo(2k) /Tm ( 211i7+y )I]

(4.4.5)

It is interesting to note that, as a consequence of (J.I..), the tem-

peiture at the interface remains constant and equal to T1 (the bound-

ary temperature corresponding to incipient yielding), thus

where Tlx in the temperature corresponding to incipient yielding at

the plane characterized by x.

It follows then, that the progres of the interface my be studied

by drawing on Fig. 4-2 a horizontal line at the height of T1 /M1, and

investigting its intercepts with temperature curves.



Since T1  is the maximum temperature for yielding, the mxim

value R1 of P, can be determined easily. Baely, since the inxLau

temperature T reached at x is given by
ax

Tax T (4I.2.6)R

it follows that

or by (4.4.6)

T Ela

R, a -a L B + (4'4'7)

Therefore, it is known that the region a • x ! R will undergo same

plastic deformation. The exact determination of the residual state,

however, can only be found from a detailed analysis.

4-43 The Plastic Region of Loading

As the boundary temperature rises beyond TI, the plastic region

extends inward from the boundary. In order to derive the appropriate

solution for the plastic region, the plastic stress strain relations

must be established first; this step must be preceded by the formula-

tion of yield functions, however.

4i-43-1 The Yield Functions

In the elastic solution the nsxJ== shearing stress q and maxi-

mru shearing strain p is related by
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Since the medium is assumed to be linearly strain hardening, the

relation between the maximum shearing stress and maximum shearing strain

is of the form illustrated graphically in Fig. 4-5.

q

p

Fig. 4-5 Relation Between Maximum Shearing Stress and Strain

in a Linearly Strain Hardening Medium

We write

where ye is the current yield stress, y1  is the initial yield

stress which is equal to yo - BT, and Ay is the increase in yield

stress due to strain hardening. Similarly, we let

AP - p" + A p' , (b)

where &p is the increase in total strain corresponding to the in-

crease in yield stress, p" is the plastic coponent of the maximu



".9

shearing strain, and Ap' is the corresponding increase in the elastic

coponent of the maxima shearing strain.

Referring to Fig. 4-5, we note that

&y - 2 pE A (c)

and

S= 2 .p (p"+ + p') (d)

We eliminate Ap' from (d) by combining (c) and (d),

Ly = 2 i p, (e)

where

11P
I~LE

From (a) and (e), the current yield stress is then obtained in the

form

yo = y - BT + -- 2 p p" ()
C 0 1-s Ip

Since, by (4.3.13), the maximum elastic shearing strain p' is de-

fined as LJ2, we have that

,& . , =/2 (g)

Similarly, we write

p o- r./2 (h)
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where rxx is the plastic strain cmcpoent in the x direction. It

remains to express p" in terms of the strain hardening parameter |

defined by (3.1.2).

Taking the plastic incompressibility, and the symmetry about the

x axis into account, we readily find

1

Moreover,

53 Bys = s = 0
xy yz xz

and, by (3.1.2),

t .. 2 112 dt

0 1/2( c 2 ) M€-•s!j
o 12= (•) r x (i)

Making use of (h) and (i), we rewrite (f) as

Yc yo- 13T + 11a2pp -- 0

If the medium has not undergone previous plastic defornmtionj, the para-

meter t is equal to zero, (J) reduces to (4.4.1).

4-43-2 The Stress and Strain Rates Corresponding to Positive Tempera-

ture Rate

The yield criterion of Tresca will be used here not only to pro-

vide a means for locating the elastic-plastic interface, but also to

serve as yield function from which plastic stress strain relations are



derived. We observe from the elastic solution that the stresses TYY

and vzr are negative corresponding to rising tu~erature, and posi-

tive for f"Lli.ng temperature. The corresponding axium shearing

stresses arej therefore, given by -Tn/2, -Tzz/2 in the first cae,

and by Tyy/2, Tzz/2 in the second case.

We now combine (3.3.3), (3.3.4) with (3), and obtain a non-iso-

thermal yield condition in the form

(2 (x - V-f (y -BT + 2.. (4.-82 o a-s

S(2). f(2). H. x "z -(Y -"T+) (4.4.8)

where

f(1 V -v V -

2 2

(2) x. z zf 2 2 , "

In particular, since

T - T T

y7 zz

we have that

f f)f(2). ./ , /,(l). .(.)p (4.t.,l)
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T
yy

2yC
-T o |

yy

Fig. 4-6 Yield Surface and the Path of Loading for the Present Problem

From (4.4.11) follows that the state of stress in the plastic reg-

ion corresponds to the yield corner which is represented by the point A

in Fig. 4-6. The plastic stress strain relations may thus be obtained

from (3.3.1), (3.3.2), and (3.2.8):

2
'a ij- Esi 7-1

(4.4.13)

(7) a(7)A"ij •N• (af(7)/-& •(7)/ ) 1/2 k

vhere f(7) are given by (4.4.8), (4.4.9) and (4.3.10). The flow rule

(4.4.13) is complemented by Hooke's Law, (4.3.2), and the condition that

the total strains in the y and z directions vanishes. These condi-

tions furnish five equations for the five unknowns 4 xx' 5X',' E. FyI
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s yy and ir . in the plastic region. Specifica.1T, we find*

11

s= - 1, , ,¶- (+

3 ((4.)/21

n -8 1 ( .+ia) (d)
1 (1 -/ (,, .J,, ,1, ( "

on= 1 (e)
* =-~ (e)

Since the stress T = T and the total strain e are of pri-
yy zz xx

mary importance, we solve for them from (4.4.14), and obtain

T - 'r - M T , (II..i.15)
yy zz

6 - s + • - NT , (&.14.16)
T i xx xx

.Thdeiaino(a n.bin(41)isgvniApedxB
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where 2/2

E1 (i-s) +,2 (i-V1 ) /p (4/3) 12

(I.4.4-17)

N- 1. / 2 - 1/2 2.,
N =5[a+LM + -

1p21p 1l

We emphasize that equations (4.4.15) and (4.4.16) are applicable

only to the plastic regions where plastic flow is induced by rising tem-

perature. Moreover, with reference to (4.4.15) and (4.4.17), we note

that a positive temperature rate may give rise to a positive or nega-

tive stress rate depending on whether the effect of temperature upon

yield stress dominates or the effect of strain hardening upon yield

stress dominates. In thefirst case, the stress Tr in the plasticYY

region will always be less than the value it assumed at initial yield-

ing.

The stress and strain distribution in the plastic region may be

obtained by integration of (4.4.15) and (4.4.16).

4-43-3 The Stress and Strain Rates Corresponding to Negstive Tempera-

ture Rate

If the boundary of the half space is cooled, the stress in the y

and z directions becomes tensile and the max1xs shearing stress be-
comes r,/2 - Tzz/2 in the place of - /02 - - Tz5/2 found for the

cae of heating. The yield functions corresponding to (4.4.8) and

(4.4.9) now rassume the forms
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V -V

M f " -x (yo - B + _2 Ti--) (2.p.19)
,(2)' . (2)1' . - v x- "

where

2

f(2)' v- v" "
2 2

H yc yo- BT- + 1i.-a 2 ,

Again, since

=
yy zz

we have that

fr() f (2)' . fI (l) F (2)'

Proceeding as before, it is found that the stress rate and strain

rate are related to the temperature rate by

SW M'T (4.4.20)

xx
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where

MIa-2 lB Ei(l-s) - 2E, a t',O /2
E (l-s) + 2 gp (-141) (4/ý)1/2

(4.4.22)

/(31/2 1/2 2V,

N1 La.B(1-).-) a-_M, LE + 1_ ]
AP 2 gp 1,

Relations (4.4.20), (4.4.21), (1.4.22) may only be used to describe

the stress and strain rates in any plastic regions where plastic flow is

induced by falling temperature.

If the yield stress is independent of temperature, the response of

the medium should be the same regrdless of whether the external excita-

tion is a heating or a cooling pulse. This, in fact, is the case if

the quantity B in (4.4.15) and (4.4.20) is set equal to zero, in which

case these equations became identical; the same is true for (4.4.16) and

(4.4.21). Furthermore, if in addition to setting B equal to zero in

(4.4.15), (4.4.20), (4.4.16) and (4.4.21), the plastic shear modulus

pp is set equal to the elastic shear modulus p., these equations re-

duce to their elastic counterparts represented by (4.3.8) and (4.3.9).

4-43-4 The Criteria of Loading and Unloading

As was noted previously, the medium will undergo some plastic de-

formation in the region a _ x -,R if temperature exceeds the value

T, given by (4.4.6). For a point in this region, two instants are of

prime importance: the instant at which plastic flow begins, and the in-

stant at which plastic flow ceases. The first instant can be obtained



57

from (4.4.2), whereas the second instant remains to be determined.

The loading and unloading criteria discussed in Chapter 3 may help

to shed some light on the duration of plastic flow. From the relations

(3.3.2), (4.4.8), (4.4.9), (4.4.31), (4.4.12) follows that, for the

present case, these criteria may be expressed by+

-- r y+ BT >0 for loading

(4.4.23)
1."

" " - 'y + BT <0 for unlbading

Substituting (4.4.15) into (4.4.23), the cirteria become

(B -. M) T>O for loading

(4.4.24)

(B M) T <0 for unloading

where M is given by the first of (4.4.17). The quantity inside the

parentheses of (4.4.24) is a constant, and is found to be positive

definite upon closer examination. Therefore, the criteria for loading

and unloading may be expressed as

T > 0 for loading

* (4.4.25)
T < 0 for unloading

+The derivation is given in Appendix B.
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It is thus seen from (4.4.25) that, at any location in the region

represented by a.- x <R1 , plastic flow begins at the instant tlx

at which the temperature T is at T1 , and terminates at the instant

tMx for which the temperature is at its maximm TMX"

4-43-5 Solution for the Plastic Region

The stress T and the total strain G in the plastic regionyy 'cc

may be obtained by integrating (4.4.15) and (4.4.16) between the limits

t x and t where t x is the instant of incipient yielding at x.

By (4.3.8), (4.3.12) and (4.4.6), we obtain after appropriate integra-

'tions

T y (x,t) = M T(x,t) - [2 yo + Y (M - 2B)] (4.4.26)
B + 3o/2(-V1l)

i + • YO

a (x,t) = N T(x,t) - [(N - - • B + 1 a12(l -0:) ('4"-27)

where M and N are given by (4.4.17).

The displacement UX, denoted by U, is obtained in the plastic

region by integrating (4.4.27) with respect to x between the limits

01 and x

1+1 y.
U(x,t) = (N - r YO x)

1 B+L /2(1-2VQ7 1
1/21

-,- m(•e) (2- ) -2

+ g (P1,t) , (4.4.28)
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where *(a) is the error function defined by ( The function

g(P 1 ,t) may be determined by considering the condition of continuity

of displacements at the elastic plastic interface x - P1 , namely

Uelastic = plastic at x= P1 (4.4.29)

From (4.4.28), (4.4.29) and (4..315) then follows the result

1+Vl a ( Ee) 1/2 M (4.4.30)
1-t ) 2 2 A KT

The complete solution for the time interval t1 !! t -- tm is given

by (4.3.8), (4.3.9), (4.3.15) for the elastic region and by (4.3.26),

(4.4.27), (4.4.28), (4.4.29) for the plastic region.

4-5 The Elastic-Plastic-Elastic Regime

'4-51 The Onset of Elastic Unloading

This section is concerned with the response of the material at

time t> tm where tm is the instant at which the temperature at the

boundary is at its maximum,. We recall here the criteria (4.4.25) for

loading and unloading, and observe that any point in the region

a -- x - R1 unloading is imminent when T becomes zero. In other words

unloading impends as soon as the temperature at any location in the re-

gion a < x -- R1 has attained its peak value.

From inspection of (4.2.3) and (4.2.4) it is found that the tem-

perature first attains its maximum at the boundary at the instant tm

4ven by
2

a (4.2.3)R
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At this very instant the temperature at the boundary begins to decrease,

and an elastic unloading front starts to progress into the medium. The

unloading front eventually overtakes the front of plastic loading at

the instant

t,, Ri 2  (4. 2. i)R,
2K

and at the position x = R 1 of the half space.

I I

I Region of Region of
I Estic Plastic i

Unloading Loading Elastic jegion
-- X=P2

0 X
I X=P, -----I _I

Second Elastic First Elastic

I Plastic Plastic
Interface Interface

I II / I

Fig. 4-7 Regions of Loading and Unloading in

the Elastic-Plastic-Elastic Regime.

4-52 The Elastic Region

For time t > 't, the elastic region still lies beyond the elastic

plastic interface the position of which is denoted by pl, and may be

found from (4.4. 5 ). The solution for this region is identical to that

derived in section 4-3.
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4-53 The Plastic Region of Loading

The plastic region now lies between the two interfaces P1 and

P2' where P2 denotes the position of the elastic unloading front.

In this region the equations (4.4.26), (4.4.27) and (4.4.28), derived

in the last section, still represent a valid solution.

Let us recall that the unloading front is located at a point where

the temperature is at its maximum. For a given position x, the in-

stant t at which the temperature attains its maximum is found from

(4.2.4) to be

tr = . x2 /2K (4.2-4e)R

Therefore, the position x = P2 of the unloading front is given by

2p2  2 t (4.5.1)

t mRI t t m1 t

where

t2m- = R 2/2K tM = a2/2K

The position x = P1  of the plastic loading front can-be determined as

before from (4.4.5).

5-54 The Elastic Region of Unloading

For any instant t between tmR1 and te, three regions exist

simultaneously in the half-space, namely, the elastic region of unload-

ing, the plastic region of loading, and the elastic region. However,
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•oT • • only the elastic region of unloading and the elastic

region remain. Replacing x by ij in (4.2.4), the instant t.1

may be obtained by substituting the expression for Rj given by (4.4.7)

in the resulting equation, thus,

T 2

t3 l = f a% (45.2)

4-55 The Transient Solution in the Elastic Reaion of Unloadlng

The stress and strain rates in the elastic region of unloading may

be obtained from (4.3.8) and (4.3.9) as

Elca
- (xt) m- T (xt) (4.5.3)

• 1+1/1 a•

C (X~t) = ~--aT (x,t) (4.5.4)

We shall take as the limits of integration t and tix, where

t is greater than tmx. We also recall that, by (4.2.6), the maximun

temperature T(x, t ) is equal to Tma/z* Then using for r(x,, t m)

e(x, tmx) the results (4.4.26), (4.4.27), integration of (4.5.3),

(4.5.4) yields

S(Xt) - [2 ¢y t) + + M)

""o + e 2( -YO 1  (M - 2B•) (4.5.5)

for t > tmx
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C(x~t) - 1+V T(x, t) + [ (N a) 1+2 r0
11+/1 1 8l TV (m x B l~a/2(1-2/j)
1i+// 1+io

for t>t . (4.5.6)

In order to obtain the displacenent U, we integrate (4.5.6) between

the limits Pi and x and obtain

1+V 1/ Pi
U(x,t) A a•' e) IL x(-" ) .. *(,/ ) I

_'la a m. ( g

+ [(N - l a) [T a l -0"1 Pi B + E, a/2(1-p• (x -i

+ g (Piý t) (4.5.7)

where pi is defined as follows:

p ip2 for tMR> t tn

1 for t >, tMI

Formally the function g(Pi: t) in (4.5.7) is determined from the con-

ditions of continuity of displacements across the interface x = pi,

elastic unloading = Uplastic

(a.1.8)
at x-=P 2 for tm~l> t > t ,
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and

%U stic unloading = elastic

(4.5.9)

at x = RI for t tmR1

Thus, by (4.5.7), (4.5.8), (4-.5.9), (4.4.28), (4.4.3o) and (4.-.15),

p21t) 1(• - ) B + 0 a/2(1-•v 1 " P2)

N e)m /2 [ 2- P__2
2j~

l2V 1 2 /2 1

+ r• a a Tn e) 1/(2-) - 11 (4.5.10)

and
g(R+ 1t) .1- aaT ( ) (( - 1] (4.5.11)

1Vm 2 r-

4-56 Steady State Solution in the Elastic Region of Unloading

Expressions for residual stress TR, strain eR and permanent

deformation UR may now be derived from (4.5.5), (4.5.6), (4.5.7) and

(4.5.11) by letting the time t in these equations tend to infinity.

We readily find that

TI(x) T (M + i-ax T

-[2 yo + + YO/2(1-) (M " 2)1 , (4.5.2)
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e,(x) - (Nx- 1/cx) (T, B+ 1a/2(l-P)I

SI+V± YO%(x)~ -(N--- 1 [ al xRl.)JI

u~~(x' R, BN~yX +~&JI El~ I

" • e 1/2 (4.5.14)
1 -I aa 2

where, by (4.4.7), the quantity R1  is given by

T a
S= a -M (Bl+ (4.4.7)R

We observe from (4.5.12), (4.5.13) and (4.5.14) that the residual

stress, strain and deformation decrease from their maximum values at

the boundary to zero at x = R1 . The last term in (4.5.14) represents

the uniform expansion of the material, and is due to the assumed van-

ishing of displacement at infinity*.

With the transient solution given by (4.5.5), (4.5.6), (4.5.7),

and the steady state solution given by (4.5.12), (4.5.13), (4.5.14),

solution for the elastic region of unloading is completely determined.

However, it should be noted here that the relations just mentioned above

are applicable to any position in the region of unloading only if the

material there is in the elastic state.

4-6 Extension of the Solution to Higher Boundary Temperature

In the preceding sections of this chapter, it was tacitly assumed

that the maximum boundary temperature T is of such a magnitude that

*cf. The equations (4.3.15) and (4.3.16).
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no yielding occurs in the region of unloading. However, an inspection

of the equation (4.5.12) for residual stresses shows that the residual

stresses increase with increasing values of the maximum boundary tem-

perature Tm. It is, therefore, possible that for sufficiently large

Tin, the process of elastic unloading may be followed by plastic flow.

In what follows this possibility will be fully investigated.

4-61 Yielding in the Region of Elastic Unloading

As was noted in section 4-4, unloading at the point x begins at

the instant t when the temperature there has reached its maximummx

value. Let us now define t to be the instant at which plastic flowpx

occurs during unloading at x. If we account for the temperature de-

pendence of yield stress, then, as may be seen from Fig. 4-8, yielding

in the opposite sense will impend, if the stress L or T has
yy zz

changed by the amount

2/T1 (x't)/ + 2B(T(x~tmx T(xt )]

Equivalently, at the instant of incipient yield.i.ng in opposite sense,

the maximum shearing stress q(x,t) has changed by the amount

r (x't M)
q(xt) = + B [T(xitmx) - T(xt p

during the time interval from the start of unloading at trx until

the instant t . The mathematical expression for the criterion of

px

yielding in the region of elastic unloading is then as follows
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r Y (x,t )X -ry (x,t) =

2yy PI (~ =/+2 11(~ = ~.. X) 461

If equations (4.2.6), (4.4.26) and (4.5.5) are substituted into

(4.6.1), we obtain

E 1a(2B- -• T~x, Sx) -(2B V i'• 2- Tm a~
mx

+ 2 (2 yo + B O+ E{/2(l-) (M - 2B)) (4.6.2)

It is of interest to determine the maximum boundary temperature

for which the elastic unloading will not be followed by yielding.

Setting T(x,t PX) in (4.6.2) equal to zero, we find the result

pxo

1 [y+ YO M-2)

(4.6.3)

If the maximum boundary temperature Tm is greater than TM, plastic

flow will occur again during unloading. Let t denote the instantpa

of incipient plastic flow at the boundary x = a. Then both t and
pa

t may be determined fro= (4. 2.5) and (4.6.2) :
px
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e tpa 1

, p (22 -EA- Ela/T'l) m ,I a . -)

+ 2 (2 yo *0 + EY (M -2)] (4.6.2a)

S+El a/2( 1-i

_ _1 1

( --- m (2 B --, 1 a 4) T M
2KtP 2 la/14v1) 1 /e mx

+ 2 (2 y0 + YOa2(-j (M - 2B)) (4.6.Za)

T T

x=R X=R1

V

tM1 t t t• tM1 t

(a) (b)

Fig. 4-9 Graphical Determination of tpa in T-t Plots



70

Since a closed form solution for t does not exist, we mW deter-

mine t graphically by drawing a horizontal line of height W, and

intercepting the temperature curve for the boundary x = a as shown in

Fig. 4-9. Here, by (4.6.2),

Ea

2 [2y + YO,
+1(N - 2B)]/(2B -

For t> tpa, a new plastic interface, specified by x P 3'

propagates from the boundary into the interior of the half-space. The

position P3 can be found from (4.6.2b) if we there replace x by P3'

and t by t. Denoting the steady state value of P3 by R and

setting T(x,t pa) equal to zero in (4.6.2), we obtain after rearranging

a T ,, B + E c/2(1-l,)
R , - B+ (1. l M+E 1 ali-v 1 (4.6.4)

We recall that the steady state position RI of the plastically

deformed region is given by

R = -yo [B + (4.4.7)R

From an inspection of (4.4.7) and (4.6.4), we conclude that the

plastic region formed during unloading never extends to the boundary

R1 of the total plastically deformed region.
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The total number of regions that ;y possibly exist in the half-

space as a result of raising the maximum boundary temperature above.

the critical temperature TM may be inferred from Fig. 4-9. The case

when tpa is greater than tMR1 is illustrated in Fig. 4-9a. As may

be readily seen, in the interval between t a, and t only two re-mRpa

gions exist in the half-space; the elastic region of unloading and the

elastic region. For t > tpa there exist three regions; the region

of plastic loading in tension, the elastic region of unloading, and

the elastic region. In Fig. 4-9b we have illustrated the case when

t is greater than t . In the interval between the instants

t and t mR , four regions exist simultaneously in the half-space;

the region of plastic loading in tension, the region of elastic un-

loading, the region of plastic loading in compression, and the elastic

region. However, for t > tmR only three regions remain, namely,

the region of plastic loading in tension, the region of elastic unload-

ing, and the elastic region.
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Source
Plane

ReiRegionI
of Region of of

-Plastic, Elastic Plastic I Elastic

-Loading, Unloading Loading 1 Region

o Iressio

0 I

X--

Fig. i-lO Regions of Loading and Unloading in the

Plastic-Elastic-Plastic -Elastic Regime

4-62 The Transient Solution in the Region of Plastic Loading in

Tension

We note that, at the instant t of incipient yielding in thepx

region of elastic unloading, the sign of the maxiwmm shearing stress is

opposite to what it was when yielding first occurred at that point, and

at the instant tlx. In the present case, the stresses in the y and

z directions will be tensile rather than ccompressive; yielding is caus-

ed by the continuous decrease of temperature from its maximum value Tmx.



73

In order to find the stress and strain in this region, the equations

(4.4.20) and (4.4.21) should be used in the place of (4.4.15) and

(4.4.16). Recalling

y = M'T , (4.4.20)Ry

y = N' T , (4.4.21)Ry

where

- 2B El (1-s) - 2E. a gv (4/3)! /2

El (1-s) + 2 p (-4/3)l1 2 (l-1,)

(4.4.22)R

1/2 2 V 1/2

NI 21p -14' - + a]

the stress and strain in this region are determined by integrating

(4.4.20) and (4.4.21) between the limits t and tpx. Thus, by

(4.6.2), (4.5.5) and (4.5.6), it follows that

T (xt) M'T(x,t) + [( + M) 23 ol/1-•, (2 2- -

M, + - 0

• 1 ) - [2 M, + M_/_-p• + 11 .[2 yo

Yo
+ B + YO.2(l-" 1 (M - 2B)] (4.6.5)
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i1.% N' - (1÷•1/1-•1)a
,(x,t) . N'T(Xt) + [(N - 1=-/ N) - .

"M, N - - (+Y-1/1)- a

2 y

'( 4 y 0 + 0111/2 (M - 2B)]

N - (i+v,1/i-v) a (
+ B + a/ -•1/12 Y(o (',.6.6)

The displacement U is obtained by integrating (4.'6.6) between the

limits x and

U(x,t) =a WT e) 1/2 [*(--) x P3
in 2 2 /Kt2A

+ N'- (1 +/V/-1{ (2B Y_ 2K)

+ ÷• (N a)ITa 2 NI - a1•/-i-T•n 3 - 2 -ad)/Z-•

-[4 yo 2O] (M " 2)]

o B + oE 1/2(1--$j)(M B)

N - (a.+v/J-Z ) a
+ B + a3l/2 (1-pl) YO (x - 3) + g(03,t) (4i.67)

Here g(P,,t) is a function of time, and is determined by the con-

dition of continuity of displacement across the interface:
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Uplastic loading = Uelastic loading at x=p3

in tension
(4.6.8)

Thus, by (4.5.7), (4.5.10), (4.6.7) and (4.6.8),
1+ 1/Ae)

03 2

1-VI B + -K7 /gl.41J

S1/2
+aT a n) -ZaNT e)

P 21 2 2 N

- * ( P2)] 
(4.6.9)

for t > t > t

For the instants t > tMR1, the function g(p 3 ,t) is the same as that

given by (4.6.9) except that p = P2 : RI" Specifically,

1+V 12 31+
g(P1 aa T- 11 + (N a)

.(aT% ln- f2 0 O(
S , • B + 091/2(1-V,) 3 1

(4.6.1o)

for t>t tm
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The stress, strain and displacement for the region of plastic load-

ing in tension for the cases tpa > t>t pa and

t > tp > t are now completely described by (4.6.5), (4.6.6),

(4.6.7), (4.6.9) and (4.6.10).

4-63 The Steady State Solution in the Region of Plastic Loading in

Tension

The residual stress TR and ER are obtained by setting the

temperature T(x,t) in (4.6.5) and (4.6.6) equal to zero, whereas the

permanent deformation UR is determined by letting the time t in

(4.6.7) and (4.6.10) tend to infinity, and by replacing p1 by R1,

P3 with R11. The results are

(M+ 1  - M' + aK1/i-vi (•B .-Ca •) W)

TR(x) 1 [(1 + ) -• - /B-.: -a

+ E/-Vi ________

-(22B - Cg - +) V 0 B + +o,_/2(kl-l./ (M -2B)]

(4.6.u)

r(X) = [(N, - 1.-.-• ( N'- (i+v -v-• a,.-- )

rBa /1-vj 2: / V1 [4x-N' - /1- 2 y(" ~~ ~ 1 C 4 •ll%•yo + (M -.r.•)( 2.B)]

N -(I+v/l-v 1 ) a
+ B + Oxi/xi-vi) YO (4.6.12)
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( ( Vl i' - (1+i2,1/1•,) a Cal()-~ C N C cx- 2  (2B - r- -

+ - (1+V/11-iV) 2 yo

(23 - /1 - [-4y + B + aE1/2(1,.n (. - 23)]

N - (1+lVi/lVI) a 11+1/ RU+ B3 ' 03•j1/2t1.-rp• yol (B1,- x) + [ (N - V -- a-II<) a T. ln R,.-

+ + YOI(-j (R) - Rl) - a a T,, ( it e) 12

B+ B+2N1/0(1-V 1 )(R- )] 1  -aT 3  .e

(4.6.13)

The stresses, strains and displacements in the regions lying beyond

P3 are derivable from the relevant formulas in sections 4-3,, 4-4 and

4-5.
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Chapter 5. An Elastic Perfectly Plastic Response of a Half-Space to a

Uniformly Applied Heat Pulse

5-1 Introduction

The solution for the response of a half-space subjected to a uni-

formly distributed heat pulse was presented in the preceding chapter;

the medium was assumed there to be elastic, linearly strain hardening,

and possessing a temperature dependent yield stress. In this chapter

the same problem is reconsidered for the cases of perfectly plastic re-

sponse with temperature dependent yield stress, and also assuming the

yield stress to be coustant.

The requisite solutions may be obtained by a direct calculation,

or as special cases of the solution for strain hardening materials.

Since the pattern of growth and decay of various elastic and plastic

regions is essentially the same, we shall not give a detailed discuss'

ion of the solution, and limit the presentation to a statement of the

solutions for stress, strain and displacement in the different regions.

The chapter is divided into two parts: In Part 1 we investigte

an elastic perfectly plastic medium with a yield stress varying linear-

ly with temperature, whereas in Part 2 the yield stress is taken to be

constant. The elastic solution is the same for both cases, and is sup-

plied by (4.3.8), () 3.9) and (4.3.15).

5-2 Part 1. Reponse of an Elastic Perfectly Plastic Medium with a

Yield, Stress Varying Linearly with Temperature

5-21 The Plastic Region

As before, we use the yield criterion of Tresca, so that yielding



79

is assumed to occur when the maximum shearing stress becomes equal to

the current yield stress Yc in shear. The value of the yield stress

ye is now given by,

ye = YO -" (x,t) (5.21)

and, by (3.3.3),(3.-.4) the yield functions assume the form,

,(1) = - (y" -T)

22
f(2) = z x

a _ (- = F

Moreover, since (y w

In the present case the maximum shearing stress in the plastic

region is always equal to the yield stress; therefore, by (14.3.12),

r y(x,t) = - 2 VYo " D~x,t)] (5.2.-4.)

The strains are obtained by (3.3.5), Hooke' s Law, and the condition

that the total strains in the y and z directions are zero. Speci-
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fically, fran (5.2.2) follow the relations

2 [a)-(a) , (2) +) C)
S a= 2 2

B -s 2 (ax)af (CC) 1, x(i) X~(2) 1** 2X2-
a•l y

= -- T T (C)

Si - "(d)

a y -y (e)

Moreover, (5.2.4) implies that

S - 2 BT (f)

The solution of the five equations (a), (b), (c), (d) and (e) for

the five unknoms s, , * x' Y and X then yields

1 .1 
(5.2.5)

1-v

1-v/"itx X (4B - +2a],()

sy - [RB + 21 a] (h)
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-( M - +a)T (i)

E-y =1-v 1Býl '+ ] T j

and the total strain rates are expressed by

1 4(l - 2 1/)
e = s +&x El B + 3 a IT (5.2.6)x x E

e - 0 (5.2.7)

The corresponding relations for regions in which plastic flow is

induced by cooling can be found without difficulty, keeping in mind,

however, that during the decrease in temperature stresses in the y

and z directions are tensile rather than compressive. In the place

of (5.2.2) the yield functions are now given by

F(1) 2F(=) = - (yo - B1

F(2)- = (yo - B1

(5.2.8)
(1) = v -vfZ = • , x

2 2

Tz Vz - VX
2

Since T =
y z

f(i) = f(2) F() - (2) (5.2.9)
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The stress and strain rates in the region in which plastic flow is

induced by decrease in temperature may now be expressed by

,y = 2 (y - B)

(5.2.10)

y

2 4(1 -2/

e - a +i = [ B+ 3a]T (5.2.12)

In order to calculate the strains fram (5.2.6), we integrate between

the limits t and t lx. Noting that

E x(Xý,t i) = 1 a T• (x, t i)

is given by the elastic solution (4.8), and that by4.

the total strain is then found to be

4(1 - 2 )V)
ex(xt) = I El B + 3 a] T(A,t)

1 + 1 4 (1 -2 Vl)) YO1, a•=•[ B -3 a•.]B +, %,•
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where

T(xt) T e (5.2.13)

The corresponding displacement is obtained by integrating (5.2.13)

between the limits x and P1:

k(I- a( 1/2 PU(x,t) B] a T a e

1+ v 1 4(1-22 1l) YO
1- a -- 3 a] B+ E 1 2(1.V 1 ) (x- P)

11

+ 1 ( l ( e) -

for Pl> x>,a , tm> t>t>

(5.2.14)

or P1 >x>- P2  t MR,> t >tm

where P1 and P2 are determined from (4..4.5) and (4.5.1), re-

spectively.

5-22 The Elastic Region of Unloading

The stress and strain rates in this region *r. gilin by

T (x,t) = - 'L T(x,t) (4.5.3)R

(t11+jt -V )(154)
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Integrating (4.5.3) and (4. 5 .4) betireen limits t and tmx,

where t> tMx, we find, by (4.2.6), (5.2.4) and (5.2.13), that

T (X.t) = -• C , (x,t) + [(1--• + 2. .).,--T yo]
m x o

(5.2.16)

1+•/1 Yo_______ex(x,t) =- a ( T(x,t) - Tm a+ o -

+4 (1-2 1Z) a + 3 0] T+ mo+~~ ~ x B 4• O i',• 2(1-- 1•

(5.2.17)

Both (5.2.16) and (5.2.17) are applicable for values of x such that
P2 > x >1a-' tp> t >tm and P2 > x> P3 for t >t pa , where tP&

and 03 are determined fron (4.6.2a) and (4.6.2b) by setting there Pp

equal to zero.

Integration of (5.2.17) now gives

1+ 1.3 1/2 xp 2
U(x,t) aaC (T -a e *( -*( ) r,( -) ]

1 2 2 ,K.n

+~v

4(1-1/ 1ý + 1

+ B[ 3 a •+,-1.-Y a] [ a l -n x

B +~1 2(.. 1)(X-P 1) + tB + 3a) Tm a (.e) ~

d * (-L--)) " '•'V•T ,(4.2.18)
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for P x>a , t > t >t
2 pa m

or

4(1-27) 1+) 1++ , _ ' B + 3a "-'• a]E IT a in + YO,%•-v
+ i 1-V L " R1 B + oE 1/2(1- V)

(R1 - xi)] (5.2.19)

for RI>, x > a , t >t tmR

Y 1 " X >P 3  , t> t a> tmR

where tim, Pl, R', P2' tmR1 in (4.2.1B) and (4.2.19) are determin-

ed from equations (4.2.4), (4.4.5), (4.4.7), (4.5.1), (4.5.2) respect-

ively.

The residual stress, strain and permanent deformation obtained

from (5.2.16), (5.2.17) and (5.2.19) are expressed by

1(x)2B)m "o (5.2.20)

4(1-22/ 1 ) a +3a-+ V 1a% YO
R E, x + .•'."-T1[ B•- " /2 (1- 1)

(5.2.21)
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(1-2V) B+3 - 1 + 11a[ ain_

YO i+ V 1/2
+ r1 2(-/) (R x)] -1 act' ( le)- Sl + - - a

(5.2.22)

The equations (5.2.20), (5.2.21) and (5.2.22) are valid only in the

region R> x>, a for Tm < TM, and in the region R,>, x > Rll for

Tm> TM, where T is' determined from (4.6.3) by setting pp in it

equal to zero.

5-23 Plastic Region Formed During Unloading

If the maximum boundary temperature Tm is greater than TM,

given by (4.6.3) for the case when 4p is zero, plastic flow occurs

again during unloading. This flow begins at the boundary for the in-

stant tPa, and, subsequently, a new elastic-plastic interface, speci-

fied by x = P3Y propagates from the boundary into the interior. This

interface eventually reaches the position x = RII as the temperature

T of the medium decreases to zero. We let tpx be the instant at

which yielding occurs at the position x during unloading. The values

TM' tPX tPa, P3 and Ell are given by the following equations as

a result of setting the shear modulus gp equal to zero in (4.6.3),

(4.6.2), (4.6.2a), (4.6.2b) and (4.6.4):

TM (ocg/.'.-,z + 2;. (5.2.23)i i/1 ,/ +,



87

i'/ a % x i'x a
(221 OZ1  T a e 1/2 e -t

o m•

Inth •ati rg on forme (5.2.2lain4)esress nth

o for Tm M• T (5.2.25)

a e1/2 -p;/i4Kt 
~m

1 1 3

4 .1 for TM>~j (5.2.26)

R1 aT% (a 1/3-z'P, + 2)(5.2.27')
4 zY

In the plastic region formed during unloading the stresses in the

and z directions are tensile, and expressed by

T y (xt') . T z(x,.t) u 2 (yo - BT (x,t)] (5.2.28)

whereas the strain rate is given by
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E (xt) [3 - B] T (xt) (5.?.12)R

If the equation (5.2.12) is integrated between the limits t and t px

where t > tpx, then, by (5.2.24) and (5.2.17), the following result

is obtained:

14(1-2 V) ___1_2

FE x (x,t) B)T3 xa . I%,t) + [ _ B + 3 a

i+ -Z i YO

a(" a() [•ei/+ B

1-x7t1 = [xZ E B]+ oal 1m(• [ -11 ( )

a )+ a4y -T a(2B+1-i+1 1 B .YO

for, p 3>-x >-a and t > t (.2)

Integration of (5.2.29) further gives

U(xt)=[3az 4 1  B] a Tm e2 x ""3

4(1-22/) + - vi
+B + 3aa]( al

4(1-2'1/ 1 1) 4 Y
(x-p 3)J+ C If B - a+ -a 2-11121I (x-p3 )

2B+a 1 - / /1- T am l" X + g (pt) for x >- a

- (5ý.2.3o)
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where 1+1/1 1/2 3g(p3,t)= a a T e)•/ , •2~ (Vt
1 2 /-

p1 4(1-2 al) B - al P3

"* t *(-V-) -
1-1

for t mR > t > t p (5-2.31)

Alternately,

(+, a 1/2 [r(-.Žt) -iig(pt) a-• a• e)(

4(1-21z/1) 1+ Vm1_

+ YO 17 ( - '1
B B + ca1/2 (1-) -1 1 3

for t>tpa> tmR1 (5.2.32)

where tmR, 4 P2 and tpa in (5.2.29), (5.2.30), (5.2.31),

(5.2.32) are determined from (4.2.4), (4.5.1), (5.2.26), (5.42.25),

respectively.
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The residual stress, strain and permanent deformation for this

region are found from (5.2,28), (5.2.29), (5.2.30) and (5.2.32). Thus

we obtain the following results

I R = 2 Yo (5.2.33)

4(_1-2 V )1_ a _a][%YO

-(x)= 1 El B+3- T•B•+ c 1/2(1- Z/1 )

4(1-21 l]+ 11

, 2B-E/1 -Z/ 1

- (2B + 0-31)] (5.2.34)
x 1

UR3a[ a] (T aln-
U l1 m R1YO?- () -,z, x)+ 4 12Z/) B 3

yo 4(1-2i/l)
+B+ o 1/ 2 (--l Z,17 R x)] +

1+ 1/ 2B + OE/l - /I Rll
+-- T aln--

1-1 ][2 -a(E 1 /l- 1-'I

4 Yo
"OX- •B/1 (R1 1  - x)] (5.2.35)

Equations (5.2.23), (5.2.34) and (5.2.35) are valid only for the region

RllI x > a where RII is determined by (5.2.28).
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5-3 Part 2. Response of an Elastic Perfectly Plastic Medium with a

Constant Yield. Stress

If the infinite half-space is subjected to a uniformly applied heat

pulse at its boundary, and if the medium is assumed to be elastic, per-

fectly plastic with a constant yield stress, the solution is readily ob-

tained as a special case of the results described in Part 1 of this'

chapter. Specifically, the equations describing the stress, strain and

displacement in various regions for the medium considered here may be

deduced by setting the quantity B equal to zero in the corresponding

equations derived in Part 1 of this chapter. The results of this simn-

plification will be presented in the subsequent sections, the elastic

solution being again given by (4.5.8), (4.3.9) and (4.3.15).

5-51 The Plastic Region

In this region, by (5.2.10), (5.2.13), (5.2.14), the stress,

strain and displacement are expressed as follows:

T y(X,t) 2 2y 0  (5.3.1)

e (x,t) 3aZ T(x,t) - (3 V- )pE y0  (5.3.2)

t~x,t) a a e) /2 3 P

1+ vi p 1+ V/1 2(1-V/1 )

for P,>,x > a ' m > >

Pl>,x > P , t ME1> t >_t
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where p2 is determined from (4.5.1) and P1 from (4.4.5) by setting B

there equal to zero.

5-32 The Elastic Region of Unloading

From (5.2.16), (5.2.17), (5.2.18) and (5.2.19) follows that the

stress, strain and displacement in the elastic region of unloading may

be written as

IxE1

Y (xt) =- - [T(x,t) - T a]- 2y (5.3.4)
y 1 mx o

1+1/ a _2(1-1)

ex(,t) a - T(x,t) + (3a - i- ) mx E1a Yo]

(5.3.5)

Both (5.3.4) and (5.5.5) are applicable under the conditions

P2 •> x > a , tpa'> t t m

or P2 > x > P3 t > tpa

i+24

U(x,t) - a T m (Ie)1/2 x• (--) - 1]
l-m 2

i+•/i2 /"K2t

1 ) a Tm e)1/2 ~2) - 1)

y0 1 ~2 rJ ,K

+ElC Yo2

for
P2>, x >,a t tpa> t> t

P2 - X >/ P3 tmRl> t > tpa
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or
U(x' t) a a T e) x(- 11i

m+• 2 2 / Kt)

+(3 a i-• a)[y (R -x) + T a -inx
1P Epa 0 1 m

for R 1 >- x; >a tpa, t > t> ,

(5.3.7)
R x>P 3  t>tpa> t

where Pl' P 2' tm tRI , RI, tpa' and P3 in (5.3.4) to

(5.3.7) are obtained from (4.4.5), (4.5.1), (4.2.4), (4.5.2),

(4.4.7), (5.2-.25) and (5.2.26), respectively, with the quantity B in

these equations being set equal to zero.

From (5.5.4), (5.3.5) and (5.3.7) we now obtain the following

results for the residual stress, strain and displacement:

EtQ
R (X) EP T 2yx o (5.3.8)

1V

1+Z/ 2(1-2/)
UR(x) = (a- F- a) [ a in R + 1 (R1-x)]

1+ Y11/
1i T ( e) (5.3.10)

Equations (5.-.8), (5.3.9) and (5.3.10) are valid in the region

R>1. x? a for Tm < , or in the region RI>• x •> 1ll for

Tm> T where by (5.2.27), (5.2.23), R11  and TM are expressed in the

present case by
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aRaE. (5-311)

TM . rYo C (5.3.12)

5-33 The Plastic Region Formed During Unloading

If the maximum boundary temperature Tm is greater than TM given

by (5.3.12), a new plastic region of unloading emerges from the boundary

at the instant tpa . This region eventually extends to the position

x = Ri which is given by (5.3.11). The relevant solutions for this

region are found from (5.2.28), (5.2.29), (5.2.30), (5.2.21), (5.2.32),

and are as follows:

lry (xlt) - 2 yo (5.3.13)

1+12I 2 (l-•
C(x,t) - 3 a T (xt) + (3 a - - a) - yo (5.3.14)

U(x,t) - 3 Ta E e)1x

1+4 2(1-;,)
+ (3a - -' a) E yo (x P ) + g (Pt)

for P > x >- a (5.3.15)
3

where i+V/ 1 ~/2
hee g(P t) = a a T 1/ e) ~ ** 3 11

3 m 2 2 "
1+1/ r 1/2 p2  p1

1L 2m ~

E1a yo(P p 3 )+ TmaIn for t.,l> t> t
+(o.21 Pa

(5.3.16)
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or
I+F1

l+V 1~)/2 P.()-! ~t) a a- - + (3 a - c)

Tma J In 3 1 (R 1 -"P3 )1

1 CIE

for

t >tL > tm (5.3.17)

It should be noted that P, and tpa in (5.3.16) and (5.3.17)

can be determined from (5.2.26) and (5.2.25) with the quantity B there

being set equal to zero. Finally, the residual stress, strain and

permanent deformation obtained from (5.3.13), (5.3.14), (5.3.15) and

(5.3.-17):

TR(x) = 2 yo (5.3.18)

ER(x) = (3 a - )- a(5.319)

1+2' RU,(x) =(3 a - i_-a)••••

2(1-4VI) 1+1/2
+ yo (x + R- 1 ) " a a T.( e)

(5.3.20)

The equations (5.3.18), (5.3.19) and (5.3.?0) are applicable only in the

region Rll>3 x Ž a where Rll is given by (5.3.11).
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Chapter 6. Elastic Plastic Response of a Laterally Constrained Plate

to a Uniformly Applied Heat Pulse.

6-1 Introduction

Transient thermal stress analysis of free plates has been treated by

Weiner, Landau, Zwicky [6.1] [6.2] [6.3), Yushel [6.4], and most recent-

ly by Mendelson and Spero [6o51. In this chapter, we shall consider the

response of an infinite plate constrained in the lateral direction, and

subjected to a uniformly applied heat pulse aL one boundary, the other

boundary being held fixed and either maintained at zero temperature or

insulated.

The purpose of studying a plate of finite thickness is to remove a

basic shortcoming of the solution found for the half-space, namely, the

absence of a characteristic dimension of length. Specifically, we shall

relate the dimension of the plastically deformed region to the plate

thickness and thus establish a basis for obtaining approximate solutions

of plate problems from the corresponding solution for the half-space.

If the mechanical and thermal boundary conditions for a plate

problem are similar to those applied for the half-space, then the

analysis will also be, in essence, identical with that carried out for

the half-space. In fact, the specific solution derived in Chapters 4

and 5 also apply directly for plates, provided that the temperature

distribution for the hall-space is replaced by the appropriate tempera-

ture distributiQn in the plate. Therefore, let us first investigate the

temperature solutions for plate problem.

6-2 The Temperature Problems

The temperature distribution in an infinite plate, produced by a

beat pulse applied uniformly at one boundary, the other boindary being
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maintained at zero temperature, may be obtained by superposing the

temperature fields induced by a suitably located instantaneous source

and sink.

Plane Fixed Plane Sink
Source I Boundary or Source

I "i

re-L LI
I I
I I

J.-L+L Y -?tLL

X 0I I

_ _ ____ _ x
-- 7L+L-x yI +L+x

Free
I Boundary

Fig. 6-1. Location of Source and Sink for a Plate Subjected to a Uni-

formly Applied Heat Pulse at One Boundary, With the Other

Boundary Either Maintained at Zero Temperature or Insulated.

Let the plate be initially at a uniform temperature T0 . We

characterize the origin of coordinates as shorn in Fig. 6-1, and assume

that the boundary x = o is fixed while the other boundary at x a L

remains free. An instantaneous plane source and sink of equal strength

are placed symmetrically to the x = o plane; due to the symmetry of

these locations, the temperature change at x = o is zero. At the free

boundary, or at any other plane between the two boundaries, the tempera-

ture will increase fron zero to a maximum and again decrease to zero.
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The superposition of temperature solutions due to a source and a sink to

describe the increase of temperature over the reference temperature T0

is thus expressed by

1 (7L+Lx) 2 (71+,x) 2

T(xt) CI - [e " t -e "e t J (6.2.1)

Here C is a constant, L denotes the thickness of the plate, and 7L

represents the distance of the source from the free boundary (Fig. 6-1),

the quantity 7 being an arbitrary constant. By varying 7 , the shape

of the heat pulse, or, equivalently, the time rate of increase of temper-

ature may be adjusted. By inspection of (6.2.1) we find that T n o for

x = o. If two sources of equal strength are placed symmetrically to the

x = o plane, then no heat will be transferred across this plane, and the

temperature distribution will correspond to the case when the plate is

subjected to a uniformly applied heat pulse at the free boundary while

the fixed boundary is insulated (Fig. 6-1). We find

1 (7L+L-x)-2 (7LLX) 2T(x,t) t C - e 4 + e 2t (6.2.2)

where C2 is a constant.

The maxiamu temperature Tx attainable at an arbitrary plane x

in the plate, and the corresponding instant tmx at which the tempera-

ture assumes this value TMX are very significant in the analysis of the

mechanical response. In order to evaluate Tmx , it is first necessary

to determine t from the condition

0 (6.2.3)
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The solutions appropriate to (6.2.1) and (6.2.2), respectively, are

then given by

(Zt.-x) 2 (y+'-x )2 (ZL+•x)2 2

e e ct( x - e 4 MX

for
L >, x > o (6.2.4)

and

[e Vt + e MX 2Kt= mx

(-YIIL-x) 2  (yI tL x)2

mx mx

for L >, x > o 
(6.2.5)

The constants C1 and C2 in (6.2.1) and (6.2.2) may be eliminated

by introducing the maximum values TML , ordinarily assumed to be known,

for the plane x = L . Denoting by tmL the instant for which

T TmL , we obtain from (6.2.1), (6.2.4), (6.2.2), (6.2.5) the results

E"t'• L.(.- 4tML (L7,.)2 11/2

SeL 1/2(e iL ~ L- eT (2L+7L)11/
C1=(e -KmL e 4KtmL]32 (6.2.6)
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and 274(L2)

Ce • " + e tn. i

2K 2K
C =TL L2 ( 2T, L

[e -+ e ]L/2 (6.2.7)

where tmL in (6.2.6) and (6.2.7) is found from (6.2.4) and (6.2.5),

respectively.

Having derived expressions for tmX , C1  and C2  , we are now in

a position to calculate the maximum temperature Tmx attainable at any

point in the plate. The variations of temperature T with time t for

various values of x for both solutions (6.2.1) and (6.2.2) have been

plotted in terms of dimensionless variables T/TmL , x/A , and

tA 2/2K , and are shown in Figs. 6-2 and 6-3, respectively.

6-3 Response of a Laterally Constrained Plate to a Uniformly Applied

Heat Pulse at Its Free Boundary With the Fixed Boundarg Maintained

at Zero Temperature

The plate considered in this section is one constrained in the

lateral directions, with traction free boundaries x = o and x = L

The solution

U = U(xt) U = = o (6..31)

exx = C (xt) en = ezz = 0 (6.3.2)

T = T =• T • =o0 (6.3.3)

then satisfies both the stress equation of equilibrium and the traction

boundary conditions. A further boundary condition is imposed on the

displacements by

U =o at x = o for t> o (6.3.4)
xx
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The similarity between the problem for a plate and the half-space

becomes evident frmn inspection of equations (4.3.5) to (4.3.7). In

particular, comparison of the temperature distribution represented by

Fig. 4-2 and Fig. 6-2, and the fact that the temperature and displacement

in the half-space were assumed to vanish for large x , bring out

clearly the analogy between the two problems. Therefore the response of

the plate to the uniformly applied heat pulse represented by (6.2.1) is,

in essence, the same as that of the half-space. Especially, if the

proper temperature functions are used, the equations describing the

transient and residual stresses and strains in the half-space may be used

to describe the corresponding quantities in the plate.

During the initial stage of the heat pulse, the entire plate is

elastic. The non vanishing stress and strain canponents are given by

(4.3.9) and (4.3.8):

T= = r =ý= T (.3.9) Re

C =e,~.X Z1 -11aT (4.3.8) Re

The maximum shearing stress is represented by

q U. )T (4.3.12) Re
1

where the temperature T for (4.3.9) Re, (4.3.8) Re and (4.3.12) is

given by (6.2.1).

The displacement U. is obtained by integrating (4.3.8) Re in

conjunction with (6.2.1). In view of the condition (6.3.4) we obtain the
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result
l+Y,

%UMrxt) - a CI (€)1/2 f2 *(Z,_"'L *(7I___x) (V*L+1 )J
lj 12./• 2./t ky

(6.-.5)

I I I
Source I]tee L Fixed Source of
Plane I Boundary Boundary I Sink Plane

I I i

I R-

I I

Fig. 6-4 Boundaries of the Total Plastically Deformed and

Steady State Plastic Regions in the Plate.

It is seen from Figs. 6-1 and 6-4 that the origin of coordinates is

chosen at the fixed boundary of the plate instead of at the source

plane as was done in the case of the half-space (Fig. 4-10). Since the

heat pulse is applied at the plane x - L, the dimension of the total

plastically deformed region and that of the steady state plastic region

are given by (L - R1 ) and (L - R1 1 ), respectively. Here R1 and

RII still denote the distances between the origin and the boundary of

the corresponding regions. In order to estimate the damage produced by
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the heat pulse, the location of the boundary of these two regions will

now be determined. By the criterion of Tresca, yielding occurs where-

ever the maximum shearing stress becomes equal to the yield stress in

simple shear. From examination of (4.3.12), (6.2.1) and Fig. 6-2, it

is evident that the initial yielding starts at the boundary x = L

(Fig. 6-4), and that the elastic plastic interface will progress into

the plate from this boundary as the temperature continues to increase.

Following the same reasoning as that presented in section 4-4, the

boundary of the total plastically deformed region is thus determined

by solving the following two simultaneous algebraic equations:

_Y7+L-Rl 1 (yL IR 1) 2

- MR 1tmK 22 2

- (•L•.-R9) 2  (- 2L+I)

e Kt mR 1 -e 4tmR 1(63)

and
yo

B + E1a/2(l-l/I) =T1 (613.7)

where - ( L+L-R1)2 - (7+L+R 1 )2

T __t mR 4KtmR1
THR1  1 1 [e - e

Here, it my be noted that (6.3.7) is essentially identical to (4.4.6).

Simple and explicit expression for R1 in terms of other known

quantities cannot be found from (6.3.6) and (6.3.7); therefore, the

following graphical method is suggested (Fig. 6-5).
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TM

t

T

0 R1 Rl L

x

Fig. 6-5 Graphical Determination of R il t MR1andR 1

By the use of (6.2.1) and (6.2.4), the corresponding values of t mx

and T for a given value of x may be calculated, and plotted asmx

shown in Fig. b-5. If a horizontal of height equal to TMR1 and given

by (6.3.7) is drawn, then the coordinate of its intersection with the

Tmx curve gives both tml1 and R1 . In the case when the maximum

boundary temperature TmL is greater than TML for which plastic flow

occurs during unloading, a new plastic region would be formed in the

region of elastic unloading and the steady state position Rll of this



107

plastic elastic interface may be determined by locating in the plasti-

cally deformed region the plane at which the maximum temperature attain-

able is equal to TML. We obtAin the solutions for the plate in the

plastic region formed during unloading by replacing in (4.6.5), (4.6.6)

the temperature solution appropraite to the half-space problem by

(6.2.1). In particular, replacing the maximum temperature Tm a/x by

TML in (4.6.2), we find that

1 [2 y YO (M-aB)]
T M + - ~ B 0 B+CM

2(1-•l 2(1-2/ ) (6.3.8)

By drawing in Fig. 6-5 a horizontal of height equal to T given by

(6.3.8), the value of Rll can be read off directly for any value of

7 from the point of intersection of this horizontal with the Tmx

curve. This process is equivalent to the simultaneous solution of the

following two equations for R and tmIl1.

(7+,-n2 ( +R)2
1 4tmRl11) 47tRll

C1 t [e - - e 11

11Y

12 yo + (M-2B)]

M+ -B B+ 1

2(1-V ) 2(1- 1

(6.3.9)
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and (7L+ ,-Rl1) 2  (72+L+R•)2

4KtmR11 (2L+L.-R11) 2 _Vt mR n (71+L+Rll) 2
[e R -e ,

tlM1 1 -= (eL+L-R1 1)2 2  (7-e L+R 11) 2( 2  1

e tmR1 1  - e 4KtmR (6.3.10)

The quantity C1  in (4.3.9) is given by (6.2.6). With R1 and R1 1

determined, the position of the steady state elastic plastic interface

and the dimension of the total plastically deformed region are known.

The remaining steps in the plate problem are entirely analogous to

those of the half-space problem, and, therefore, will not be elaborat-

ed here.

6-4 The Response of a Laterally Constrained Plate to a Heat Pulse

Uniformly Applied at its Free Boundary with the Fixed Boundary

Insulated

The elastic solution for the present case is the same as that pre-

sented in the last section, except that the temperature function T in

(4.3.9), (4.3.8) and (4.1312) is now given by (6.2.2). The counterpart

of (6.3.5) then reads

U(xt) 1/2 l+l 1/2 *(7Lx

r' C2 (mK) [id(I*-)

for L > x >, 0 (6.4.1)

If the temperature TmRI given by (6.3.7) is greater than Tmo, which

is defined as the maximum temperature attainable at the fixed and insu-
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lated boundary, the position of the total plastically deformed region

R1 may be obtained frnm the solution of the simultaneous equations

(71,+L-R 1 )2 (7L+RI)2

C2  t--1/ [e mR1  + e 'K l

YoYO 
(6.4.2)

B + 1(l1ýl
2(1-V 1)

and

-( L 'R1 ) 2 _ ,(y .L+R1 )2

[ mR1  (7L+L-R 1 )2  
1  (I-+L+R 1 )2

[e2K +e2/

tmRl e. (yL+L-R 1 )2 -(YL+L+R 1 )2 2

e mR1 4tmR1  (6.4.3)

where C2  in (6.4.2) is -iven by (6.2.7). The graphical method sug-

gested in the last section for locating R1  is still applicable here.

If on the other hand, T mR is less than Tmo, the entire plate would

experience varying amounts of plastic loading and would becone elastic

again once the temperature begins to decrease.

The maximum boundary temperature TL for the present case is

also given by (6.3.8).

The steady state position RlI of the elastic plastic interface

in the plate for maximum boundary temperature TL greater than TL

and for a given value of y is obtained fram the solution of the
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simultaneous equations

(LLR1 2 27++lý

14KtmRll 
KtmRl

C2  t 1/2 [e + e
mEll

1 [2 yo + Y (M-2B)]

= 1 BEP24, 2(1•2/i) B B S2(1-1Z/71

and

(7L+L-R11 ) 2 .(7L+-+R )2

KtmR1 1  (L+-LRI 1 )2 4tmR 1 (2L+L+Rll) 2

[e K +e ]
t1[k+- - )2 (I•Rn1)2

e - +Re ....R

(b.4.5)

where C2  in (6.4.4) is given by (6.2.7). The value of RII can also

be determined graphically as was indicated in the last section.

The transient and residual solutions for the plate considered here

can be derived in the same manner as was done in Chapters 4 and 5. No

additional challenge is posed by these problems, hence, further analysis

is not pursued.
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Chapter 7 Numerical Results and Discussinn

7-1 Introduction and General Discussion

A shortcoming of the half-space problem is that it lacks a charac-

teristic dimension of length; in order to remove this shortcoming a

plate of finite thickness was treated in Chapter 6. We now• consider the

question of whether it is possible to predict the transient and residual

stresses and deformations in a plate from the solution of the half-space

problem. This question is considered in some detail in the following

pages.

The analogy of problems for plates and the half-space was previous-

ly referred to in Chapter 6, and it was noted there that the equations

for stresses and strains in the half-space problem may be used for the

plate problems if the temperature function is appropriately modified.

Therefore, it is of interest to determine the extent to which special

results of the half-space problem may be directly applied to plate

problems.

In the case that the effect of the dependence of yield stress on

temperature dcminates over the strain hardening effect of the material,

the maximum transient stress attainable in the half-space is found from

(4.3.8), (4.4.4), (4.4.6) to be dependent only on material properties,

and is equal to twice the initial yield stress in shear. The maximum

transient stress for the plate is therefore given by

T -2[yo - B

(7.1.1)

where YO

1 MR B + a -/(-
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A close inspection of (4.5.12), (4.6.11) describing residual

stress, and of (4.4.27), (4.5.13), (4.6.11) describing transient and

residual strains, reveals that these quantities depend in addition to

material properties, solely on the maximum temperature attainable at a

particular position, and assume their maximum values at the boundary

x = a. The highest temperature T attainable in the half-space, and

the highest temperature TmL attainable in the plate are ordinarily

assumed to be known. If T is set equal to T ML, the maximum trans-

ient strain, maximum residual stress and strain of the half-space be-

come equal to the corresponding quantities of the plate. Therefore, in

view of the foregoing remarks, and by (4.4-27), the maximum transient

strain in the plate may be expressed in the form

e = -N m -- ) B - a 1 a YO (7.1.2)max NT-B + E 1/2(l - I/

whereas, by (4.5.12), (4.5.15), the maximum residual stress and strain

are obtained from

T = - (m +•CIE, - - [2yo ÷ B + 0 . (M-2B)]
mL ___aE71 2(l- V)

(7..13)
1+ 1/1

Lm (N '(N - a) [TL B°
Max= M B 1 1/2(-

for TL < T.
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Here TL is the maximum free boundary temperature for which plastic flow

in the plate during unloading will impend. For the case when TML >T TL

it follows from ( 4 .6.11), (4.6.12) that

(+ aE M' + a Ei/i-i PaR

"R•x = [M+ --••v) 2B -• /1-P1( -• 2)

M ' + a E K / 1 1-+ 1 Y O_1 --__ _ _ _ _

(2+l)[2 + B + a E1/2(l-li) (M-2()/
(7.1.4)

1+•/ N' - i÷Z//-z+ a

1// -Y o

=[(N - - a(2B -2M - 41 T~
1m FB E- 1 /l-Z/j M-Z

N' - (1+i/i-7/) a [_ Yo + _ 2_y

2B -a Eill-Y B + a EF2(i- 1 -

N - (i+41/l-11) cc
+ B + a E1/2(1i-) Yo

It is thus seen that the maximum transient and residual stresses

and strain induced in a plate by a heat pulse associated with the maxi-

mum boundary temperature TmL may be predicted by computing the corres-

ponding quantities for the half-space subjected to a pulse of maximum

value T.L. We also note that the shapes of the two pulses need not be

the same, but that their maxim-m amplitude must be equal in order for

the similarity to exist.

Equations (7.1.1) to (7.1.4) together with (6.3.6), (6.3.7),

(6.3.9), (6.3.10), (6.4.2), (6.4.3), (6.4.4.), (6.4.5) for the determi-

nation of the positions R1 and Rll of the boundary of the total



plastically deformed and steady state plastic regions may be consider-

ed to represent the significant parts of the transient and steady state

solutions for the plate problems.

It is also possible to obtain the residual btress and strain at

any other place in the plastically deformed region of a plate by re-

placing TML in (7.1.3) or (7.1.4) by the corresponding maximum tem-

perature Tmx attainable at that position. Since the dispiacemett

boundary conditions for the two problems are not exactly identical,

the solutions for displacement will differ, in essence, by a rigid

translation.

We adopt the quantities

T/T. x/a, p,/a., p2a, ,/a, Rl/a, R11/a, U/a a %, t/a 2,

to represent dimensionless temperature T, position x, interface

positions p1' P2, P3, Rl, Rll, displacement U and time instant

t, respectively, for the half-space problem. Here a is the distance

between the source plane and the boundary of the half-space; for con-

venience, the dimensionless time is often denoted by n.

Similarly, the quantities

T/TM, x/L, RIl,' R ,A

are adopted to represent the dimensionless temperature T, position x
and steady state interface positionR R1 and R for the plate prob-

lems. The dimensionless stress and strain for both cases are expressed

by T/y0 and 0/0T, respectively.
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A detailed calculation of stresses and deformations in a half-

space, and for specific data, will enable us to gain an insight into

the general nature of the thermcnechanical response. In view of the es -

tablished similarity with plate problems, we shall also be in a position

to draw conclusion regarding the behavior of plates.

An aluminum alloy (25ST) having the folloving material properties

was selected for numerical calculation:

EI = 10 x 106 psi , a=14.5 x 10-6 in/in//F 0

K = 0.133 in 2/sec. , 2/1= 0.275

V = 0.35 4 =0.2891 x 106 psipU

PE 5.9215 x 106 psi, (7.1.5)

y=yo -BT

where y0 = 23,000 psi , B = 0.293 x 102 psi/F0 .

The data (7.1.5) represent the thermal and mechanical properties of an

elastic, linearly strain hardening medium having a yield stress in shear

which varies linearly with temperature.

In order to compare the solutions presented in chapters 4 and 5, a

perfectly plastic medium, with thermal and mechanical properties identi-

cal to tnose given in (7.1.5) was also considered, except that there the

plastic shear modulus 1P and the coefficient B were set equal to zero.

In presenting numerical results, solid curves have been used for

plotting results pertaining to the strain hardening material, whereas

the corresponding plots for the perfect plastic medium are indicated

by broken curves.
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7-2 Numerical Rcsults and Discussion for Plate Problems and for the

Half-Space Problem

The damage incurred in a half-space or plate by a heat pulse may

be characterized by the magnitudes of residual stresses and the dimen-

sion of the total plastically deformed region. As far as the residual

stresses are concerned, the location and the largest magnitude of the

residual stress are of great importance, and will be considered first.

We recall from the discussion presented in the preceding section that

the maximum residual stress occurs at the free boundaries of both a

half-space and a plate. Moreover, the largest residual stresses in a

half-space and a plate are equal if the associated maximum boundary

temperatures Tm and TML are the same. The maximum residual stress-

es were calculated for different values of Tm or TML for both a

strain hardening material having a temperature dependent yield stress

and a perfectly plastic material having a constant yield stress. This

calculation was based on the formulas (4.5.12), (7.1.3), (5.3.8), or

(4.6.11), (7..14), (5.3.18), depending on whether plastic flow occurs

during unloading or not. The results of the calculation for values of

Tm or TML ranging from 175°F to 700°F are plotted in Fig. 7-1. The

critical temperatures T1  and T for which plastic flow impends

in a half-space and a plate, respectively, were calculated from (4.4.6),

(6.3.7) and the material properties given in (7.1.5). The temperature

TM specifying incipient plastic flow in unloading was calculated either

frcm (4.6.3) or frcm (6.3.7). It was found that

=T =178°F , p &= -ML-= 375.060F (7.2.1)
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for the strain hardening material, and

- = T 230 °F , = TML= -OF , (7.2.2)T mR1

for the perfectly plastic material.

We note from Fig. 7-1 that the maximum residual stress is linear-

ly related to the maximum temperature Tm or TmL. Actually, the lin-

earity between the maximum residual stress and the maximum temperature

can be readily observed on inspection of (4.5.12), (4.6.11) or (7.1.3),

(7.1.4). In view of (7.2.1) and (7.2.2), we further note from Fig. 7-1

that the maximum residual stress for the strain hardening material in-

creases more rapidly with the maximum temperature T for values of

T less than TM than for values of T greater than TM. Here TM
corresponds to the maximum temperature for which incipient plastic flow

during unloading impends. If the maximum temperature T is greaterm

than the critical value TM, the material is in the plastic state in-

stead of in the elastic state as being characterized by values of Tm

less than the critical value TM. This accounts for the fact that the

curves relating the maximum residual stress and maximum temperature

change their slopes at Tm = T. The foregoing remarks make it clear

that the maximum residual stress for the perfectly plastic material

would remain constant for Tm greater than the critical value TM

(Fig. 7-1).

The dimension "-' •hetotal plastically deformed region is also a

characteristic measure of the damage incurred in a half-space or plate

by a heat pulse. Therefore, we now proceed to calculate the position
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R of the boundary of the total plastically deformed region. The

positions R and R of the total plastically deformed and steady

state plastic regions in a half-space, and corresponding to different

values of T may be calculated from (4.4.7), ( 4 .6.4) and (7.1.5). In

order to determine R and R in a plate, the steps suggested in

section 6-3 were followed. The dimensionless values of R1  for 7

equal to 0.5 are plotted in Fig. 7-2 both for a half-space and a plate,

7 being a parameter introduced in the temperature functions (6.2.1)

and (6.2.2) to determine the shape of the heat pulse. For a plate,

7L represents the distance between the source plane and the free bound-

ary of the plate (Fig. 6-1). Similar plots showing the variation of

both the position RI and R1 1 with maximum boundary temperature TML

for the individual plates for values of 7 equal to 0.50 and 1.00 are

presented in Figs. 7-3 and 7-4.

In the case of the plate having a fixed and insulated boundary,

two critical temperatures Tcl and Tc2 were found to exist. Speci-

fically, Tcl is the maximum boundary temperature for which the bound-

ary of the total plastically deformed region coincides exactly with the

insulated boundary of the plate, whereas Tc 2  is the marximum boundary

temperature for which the boundary of the steady state plastic region

coincides with the insulated boundary of the plate. The values of

Tcl. and Tc 2 are determined by setting each of the quantities TMR /

T cl and T kLýc2 equal to T iL Here TMR1 and TML are the

temperatures for which plastic flow impends during loading and unload-

ing, respectively, and T o is the maximum temperature attainable at

the insulated boundary.
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For the numerical values

Y7=0.50 , TmQ/47L =0.6674 ,

we obtain

T = 266.7066°F , T 2  561.97180F , (7.2.3)

for the strain hardening medium and

T1 " 4.629O1 , T = 689.24180F , (7.2.4)

for the perfectly plastic medium.

The next calculation concerns the stress and deformation of the

half-space; the transient positions of the interfaces pl, p2 and p3

were calculated from (4.4.5), (4.5.1), (4.6.26) and (5.2.27). The re-

sults are given in Fig. 7-5, the maximum temperature Tm being used to

label the curves.

Next, the equations (4.4.2), (4.5.2), (4. 6 .2a) were used to deter-

mine the instants tl, tMil and tpa for the values 300 0 F, 400°F,

500°F, 600°F and 7000F of the maximum boundary temperature T m The

dimensionless results of this computation together with R1 and R

for the above mentioned temperatures are presented in Table 7-1.

It was shown in chapter 4 that, if the maximum boundary temperature

Tm is greater than the value TM given by (4.6.3), and if the instant

tml is greater than the instant tpa, then four regions exist simultan-

eously between the instants t and t-Rl in the half-space. This may
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be verified in Fig. 7-5 for values of Tm equal to 600 F and 700 F for

the strain hardening material, and for Tm equal to 700 F for the

perfectly plastic material.

We observe from Fig. 7-5, or frcm (4.4.7), that the same maximumn

bouandary temperature T m will affect plastically a larger region if the

yield stress is temperature dependent. The same observation is valid,

of course, also for plates.

Making use of Fig. 7-5., and letting Tm=400 F, stresses and

deformations were calculated from (4.3.9)., (4.3.8)., (4.3.15) for the

elastic region, from (4.4.26), (4.4.27)., (4.4.28), (5.3.1), (5.3.2),

(5.3.3) for the plastic regions, from (4.5.5), (4.5.6), (4.5.7),

(5.3.4), (5.3.5), (5.3.6) and (5.3.7) for the elastic region of unload-

ing in both the strain hardening and perfectly plastic media. The

dimensionless results of the calculation are presented in Figs. 7-6 to

7-11. As time goes on, the transient stresses and deformations tend to

their steady state values which were caomputed from (4.5.12), (4.5.13),

(4.5.14), (5.3.8), (5.3.9), (5.3.10) for the steady state elastic region,

and fran (4.6.11), (4.6.12)., (4.6.13),, (5.3.8), (5.3.9), (5.3.10) for

the steady state plastic region. The dimensionless results of the

computation f or different values of the maxinmum boundary temperature

T Mfor the residual stress., strain and displacement are shown in

Figs. 7-12, 7-13, and 7-14, respectively.

Fig. 7-6 shows that the largest compressive stress induced in the

plastic region is greater iln the perfectly plastic mediu~m than in the

strain hardening meditum having a temperature dependent y~eld stress.

The same is not true, however, for residual tensile stress. This is
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due to the fact that the transient stresses in both the strain hardening

and perfectly plastic media, after falling back from their maximum value

in compression to zero, begin to increase in the opposite direction; the

transient tensile stress in the strain hardening medium is at any

instant higher than that in the perfectly plastic medium (Fig. 7-6) and

eventually assumes a steady state value also higher than the one assumed

by the perfectly plastic medium. The transient and residual strains and

displacements are, however, greater in the strain hardening medium, as

my be seen from Figs. 7-7, 7-8, 7-10, 7-11, 7-13, and 7-14. Another

point worth noting is that in both the transient and steady state solu-

tions (Figs. 7-9 to 7-14) the stresses, strains and displacements are

always greatest at the boundary. We further observe from Figs. 7-12 and

7-13 that the residual elastic stress and strain increase much more

rapidly with the maximum boundary temperature Tm than their plastic

counterparts in the total plastically deformed region; the position RI,

of the steady state elastic plastic interfaces can be read off from

these figures by locating the planes at which there is an abrupt change

in the slope of the curves. For T = 400 F, the maximum transient and

residual stresses, strains and displacement were found to be as follows:

TYIY 0 = - 1.5488 , at n = n = 9.2485 ,

ex/a Tm = 2.5840 , at n = 1.00 , (7.2.5)

" r =o 2.3767 , Tm 0.8295 , UR/aC T - -4.0147
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for the strain hardening medium and

T/Yo " 2.000 at n = n1 = 0.3050

eR/a T 2.286o , at n - 1.0000 (7.2.6)

"T•/y 1.48oo J, eR/ Tm 0 .5174 , TJ/e Tm - 3.7950

for the perfectly plastic medium.

Recalling the discussion presented in section 7-1, we conclude that

the values given by (7.2.3), (7.2.4) for the maximum transient and

residual stresses and strains also represent the corresponding quanti-

ties induced in a plate by a heat pulse of the same maximum ami~litude,

i.e., for TmL = 400 F.

The transient displacements are shown in Fig. 7-8; the fact that

even in the elastic region the residual displacement does not vanish

is due to the regularity conditiorfused. Therefore, in presenting the

permanent deforwmtions in the half-space, the quantity

[UR/Ba Tm + (l+V1/1-Z) ,fjeI
2

was plotted against position x/a (Fig. 7-14). The resulting curves

are found to decrease from a maximum value at the boundary of the half-

space to zero at the boundary of the total plastically deformed region.

7-3 Further Discussion

In the preceding sections of this chapter we determined the

dimensions of the total plastically deformed and steady state plastic

regions and also obtained expressions for the residual stresses and

T cf. see equation (4.3.6)
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strains caused by a uniformly applied heat pulse to the boundary of a

half-space and a plate. We are now confronted with the problem of

predicting the response of the medium to an additional heat pulse

applied after conditions produced by the first pulse have reached a

steady state. In Darticular, we would like to find the amplitudes of

the second heat pulse for which plastic flow will recur.

Let us consider the application of a second heat pulse in some

detail, assuming that steady state condition has been reached for the

first pulse. The relation between maximum shearing stress q and

temperature T is given by

2 / 2 1.l T ,(74.1.)

where the maximum shearing stress q will increase from its residual

value qR as the temperature T increases from Zero. Thus integration

of (7.4.1) yields the relation

q =2(1-) T + q . (7.4.2)

Recalling,

T TR

2 "

we may write (7.4.2) as

q aE T- TR (7.4.3)
2(1-1/1) 2
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where TR is the residual stress for which the distribution in the

half-space is shown in Fig. 7-12. Plastic flow due to biaxial com-

pression will resume wherever the maximum shearing stress q given by

(7.4.3) becomes equal to the current yield stress Ya in shear, where

yB 2P B It (7.4.4)

The relation (7.4.4) is actually the relation (f) in section 4-42.

q

Yo 1o

-p 
p

p 0 P

-q

Fig. 7-15 Shearing Stress, Strain and Current Yield Stress

From Fig. 7-15 we observe that

P"f = PR + p'I

pR being the principal residual shearing strain,

= qR
p2m
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If we recall that

-R2 qR -2

then the expression for the current yield stress becones

Replacing q in (7.4.3) by yc given by (7.4.5), we find the tempera-

ture Tlx above which plastic flow will again occur as the result of

the second heat pulse:

,Yo B R

T Y(1 + s /2(l+ , 1 1_ R (7.4.6)~~y [1 + 1/2 -s •

As may be readily seen from (7.4.6), the temperature T' is not
lx

constant but varies with the residual stress and strain in the total

plastically deformed region. In the region that has never been plasti-

cally deformed, the residual stress TR and strain eR are zero, and,

in this case, (7.4.6) reduces to the form

T 1= - YO (7.47)lx B + E1T/2(l-1)(

identical with (4.4.6). Therefore, as long as the medium remains in the

virgin state, the temperature above which plastic flow is incipient

remains equal to Tl,, regardless of the number of pulses to which the

medium may have been subjected.

With the valves of the residual stress and strain given in

Figs. 7-12 and 7-13 for the half-space, and the values of the maximum



1141

residual stress and strain obtainable from Figs. 7-1 ard 7-13 for the

plate, the temperature Tl' for the strain hardening medium, and

corresponding to different values of Tm or TML, was calculated, the

results being summarized in Table 7-2.

Table 7-2 Temperatures Corresponding to Recurrence of Plastic

Flow at the Heated Boundary of HBlf-Space or Plate

T =TL 300OF 400'F 500°F &jO°F 700°F

Six TmRI(OF) 178 178 178 178 178

Tlx! (OF) 1 309.9692 393.7360 405.5055 414.6332 1425.064O

The values of T' for other positions in the medium can also belx

determined readily by direct substitution of the corresponding values of

TR and eR into (7.4.6). comparing (4.4.6) with (7.4.6), we observe

that as a result of the first heat pulse, the temperature corresponding

to the incipient yielding in the plastically deformed region has been

raised by a factor of

I-,':: urther note from the results presented in Table 7-2 that if the

maximum amplitude TM or TmL of the first heat pulse remains within

certain limit, no further plastic flow will be induced by the second

heat pulse having the same amplitude as the firpt one. The case where

Tm = 300 F may serve to illustrate this point (Table 7-2). On the other

hand, if the maximum amplitude of the first pulse exceeds this limit,

and the maximum amplitude of the second pulse is equal to that of the
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first pulse, further plastic flow will be induced, and plastic strains

will tend to accumulate. This contention is borne out by an inspection

of the cases where Tm or 'I' is equal to -O°0P, 500°F, 600oF and

700oF (Table 7-2).

For a more detailed determination of the plastic flow during a

second heat pulse a complete analysis, comparable to that presented for

the first heat pulse, is needed. Although we have not pursued this

analysis, the procedures outlined in this work are applicable and

sufficient for the study of any subsequent heat pulses.
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APPENDIX A

Maximum Temerature Distribution Curves Used for the Determination of

the Posit-ions R, and Rll of the Total Plastically Defomed and Steady

State Plastic Region in Plates. (Figs. 7-3, 7-4).

Fig. A-1 For the Plate With the Boundary at x = L Subjected to a Heat

Pulse and With the Other Boundary at x w o, Maintained at

Zero Temperature.

Fig. A-2 For the Plate With the Boundary at x = L Subjected to a Heat

Pulse and With the Other Boundary at x w o Insulated.
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APPMNDX B

Derivation of Plastic Stress Strain Relations a and say Given by

(a) and (b) in (14.4i.14)

The relation (4.4.13) in principal stress space my be vritten as

2

Uj1m E s 7

,7-i

(7) (4.4.13) FaM/at (ýf(y)/ark f(y)I2rk)1•12

(aF (7)/• + aF(Y) /'•
/ým Vm

the yield functions are given by

,(1) V x- Vz yz_ -% (
"" (y 2 -B + )2 (4.4.8)R

2

((2) vx - Vz
- 2 . 1- "

f(2)x z (4.4-10) R22

HR y 3T+ 2,
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Recalling that

xxyy zz

and

vij 'i -1/3 8ij kk

we have

v =x- 2/3 T =- 2/3 rzz

7 yy z=/ yy

By (4.4.8), (4.4.9), (4.4.10) and (a), we obtain

=~mý3 1/2 , t()f T 1/2

(b)

aF')/vx 1/2 aFm/v - 1/2 0 ~(l/•v

and

•(2)/ = 1/2 , ()/ -- - 1/2
af /^zz

(c)
a=(2)/&x 1/2 ,., = 0, a - - 1/2

By (4.4.8), (4.4.9) and (•.4.10) it was found that

a/ (111-s) vr-2T g

(d)

aF'()/'& = F(2)/' ' = B
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By (a), (b) and (d), the following results are obtained:

1/2

(Cf(•1)/Zý= Of)/• + af(')/,• af(l)/ý, + af(l)/ý.z

1/2 1/2
= [(1/2 1/2 + (- 1/2)(- 1/2) + 0 0] = (1/2) , (e)

OF(l1/- " + F(')/'& " (1-T"*•)•
v )X+()/6 V + V + ap */

y y z z

= •.1/2 (- 2/3 .r ,) + (- 1/2)(1/3 '-y.) + 0 (1/3 y) + B1

- 1/2 ;yy + BT M

Similarly, it was found that

(a(2) )f (2) 1/2 (1/2)1/2

= (1/2)(g)

and

12Tyy +B h
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Substituting (b), (c), (d), (e), (f), (g), and (h) in (4.-.13),

we finally obtain

S=8 (1) + (2)
x xx x

1 4_(/ 12 12Ty + BT)'oc

-s /2(a) in (4.4.14)

S�) (2)
YY yy zz zz

1 , 1/ • -i2;= -•1 _8 4p (1/3)v

(b) in (4..14.,)
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AFPN•DIX C

Reduction of the Strain Hardening Solution to Perfectly Plastic Solution

It will be shown in what follows that (5.2.6) is reducible from

(4.4.16).

We recall that

4 b(1'27J, +• •(..)
ex B+3a] T ,

and

E = N T , (4,..416)R

"where
21/

N (=(a + B (1 2-,3 - m . (-,) .1.1

2B E_ (l-s) - 2 E1 I.L V'3-

E, (1-s) + 2(1-7/1) p

We now define

Np =_ [B.- . (a.)
El

If gp in (4.4.17) is set equal to zero, N should be reducible to

Np. N nay be rewritten as
pp

2V / 2B -M
N =a- M + V"3• (1-s) -T-p- (b)El p
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Substituting m given by (4.4.17) in the quantity (23-M)/2.p,

we eventually have

2B -14 V~3 2B (l-;V) + Eca (c)2 Pp E 1(l-s) + 2( 1- 7Z ) j•p

If gp is set equal to zero, corresponding to a perfectly plastic

material, the following results are obtained.

M=2B , a = li/ = 0

(d)

2B -M /-T• 2B(1- )+Ea

Now, if (d) is substituted back in (b), we obtain

27.Z1 2B(l-V) +
N a -- .2B +ff 7[ +cJ

= --- B + B + 2 a

4( l -E 2 V j) B + 3 a ] = I P
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